#! /usr/bin/env python ''' This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Quick description: ''' # standard library from math import * from copy import deepcopy # local library import inkex import pathmodifier import cubicsuperpath import bezmisc import simplepath import simpletransform def getColorAndOpacity(longColor): ''' Convert the long into a #rrggbb color value Conversion back is A + B*256^1 + G*256^2 + R*256^3 ''' longColor = long(longColor) if longColor < 0: longColor = longColor & 0xFFFFFFFF hexColor = hex(longColor) hexOpacity = hexColor[-3:-1] hexColor = '#' + hexColor[2:-3].rjust(6, '0') return (hexColor, hexOpacity) def setColorAndOpacity(style, color, opacity): declarations = style.split(';') strokeOpacityInStyle = False newOpacity = round((int(opacity, 16) / 255.0), 8) for i,decl in enumerate(declarations): parts = decl.split(':', 2) if len(parts) == 2: (prop, val) = parts prop = prop.strip().lower() if (prop == 'stroke' and val != color): declarations[i] = prop + ':' + color if prop == 'stroke-opacity': if val != newOpacity: declarations[i] = prop + ':' + str(newOpacity) strokeOpacityInStyle = True if not strokeOpacityInStyle: declarations.append('stroke-opacity' + ':' + str(newOpacity)) return ";".join(declarations) def getSkeletonPath(d, offs): ''' Recieves a current skeleton path and offset specified by the user if it's line. Calculates new skeleton path to use for creating contour with given offset. ''' if offs != 0: comps = d.split() if ((comps[2] == 'h' or comps[2] == 'H') and len(comps) == 4): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalX = float(comps[3]) if comps[2] == 'H' else startX + float(comps[3]) if startX < finalX: startY -= offs else: startY += offs comps[1] = startPt[0] + ',' + str(startY) elif ((comps[2] == 'v' or comps[2] == 'V') and len(comps) == 4): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalY = float(comps[3]) if comps[2] == 'V' else startY + float(comps[3]) if startY < finalY: startX += offs else: startX -= offs comps[1] = str(startX) + ',' + startPt[1] elif (comps[0] == 'M' and len(comps) == 3): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalPt = comps[2].split(',') finalX = float(finalPt[0]) finalY = float(finalPt[1]) if startX < finalX: if (startY > finalY): startX -= offs finalX -= offs else: startX += offs finalX += offs startY -= offs finalY -= offs else: if startY > finalY: startX -= offs finalX -= offs else: startX += offs finalX += offs startY += offs finalY += offs comps[1] = str(startX) + ',' + str(startY) comps[2] = str(finalX) + ',' + str(finalY) elif (comps[0] == 'm' and len(comps) == 3): startPt = comps[1].split(',') startX = float(startPt[0]) startY = float(startPt[1]) finalPt = comps[2].split(',') dx = float(finalPt[0]) dy = float(finalPt[1]) finalX = startX + dx finalY = startY + dy if startX < finalX: if startY > finalY: startX -= offs else: startX += offs startY -= offs else: if startY > finalY: startX -= offs else: startX += offs startY += offs comps[1] = str(startX) + ',' + str(startY) comps[2] = str(dx) + ',' + str(dy) return cubicsuperpath.parsePath(' '.join(comps)) return cubicsuperpath.parsePath(d) def modifySkeletonPath(skelPath): resPath = [] l = len(skelPath) resPath += skelPath[0] if l > 1: for i in range(1, l): if skelPath[i][0][1] == resPath[-1][1]: skelPath[i][0][0] = resPath[-1][0] del resPath[-1] resPath += skelPath[i] return resPath def linearize(p, tolerance=0.001): ''' This function receives a component of a 'cubicsuperpath' and returns two things: The path subdivided in many straight segments, and an array containing the length of each segment. ''' zero = 0.000001 i = 0 d = 0 lengths=[] while i < len(p) - 1: box = bezmisc.pointdistance(p[i][1], p[i][2]) box += bezmisc.pointdistance(p[i][2], p[i+1][0]) box += bezmisc.pointdistance(p[i+1][0], p[i+1][1]) chord = bezmisc.pointdistance(p[i][1], p[i+1][1]) if (box - chord) > tolerance: b1, b2 = bezmisc.beziersplitatt([p[i][1], p[i][2], p[i + 1][0], p[i + 1][1]], 0.5) p[i][2][0], p[i][2][1] = b1[1] p[i + 1][0][0], p[i + 1][0][1] = b2[2] p.insert(i + 1, [[b1[2][0], b1[2][1]], [b1[3][0], b1[3][1]], [b2[1][0], b2[1][1]]]) else: d = (box + chord) / 2 lengths.append(d) i += 1 new = [p[i][1] for i in range(0, len(p) - 1) if lengths[i] > zero] new.append(p[-1][1]) lengths = [l for l in lengths if l > zero] return (new, lengths) def isSkeletonClosed(sklCmp): cntOfDgts = 2 if (round(sklCmp[0][0], cntOfDgts) != round(sklCmp[-1][0], cntOfDgts) or round(sklCmp[0][1], cntOfDgts) != round(sklCmp[-1][1], cntOfDgts)): return False return True def getPolygonCentroid(polygon): x = 0 y = 0 n = len(polygon) for vert in polygon: x += vert[0] y += vert[1] x = x / n y = y / n return [x, y] def getPoint(p1, p2, x, y): x1 = p1[0] y1 = p1[1] x2 = p2[0] y2 = p2[1] a = (y1 - y2) / (x1 - x2) b = y1 - a * x1 if x == None: x = (y - b) / a else: y = a * x + b return [x, y] def getPtOnSeg(p1, p2, segLen, l): if p1[0] == p2[0]: return [p2[0], p2[1] - l] if p2[1] < p1[1] else [p2[0], p2[1] + l] if p1[1] == p2[1]: return [p2[0] - l, p2[1]] if p2[0] < p1[0] else [p2[0] + l, p2[1]] dy = abs(p1[1] - p2[1]) angle = asin(dy / segLen) dx = l * cos(angle) x = p1[0] - dx if p1[0] > p2[0] else p1[0] + dx return getPoint(p1, p2, x, None) def drawfunction(nodes, width, fx): # x-bounds of the plane xstart = 0.0 xend = 2 * pi # y-bounds of the plane ybottom = -1.0 ytop = 1.0 # size and location of the plane on the canvas height = 2 left = 15 bottom = 15 + height # function specified by the user try: if fx != "": f = eval('lambda x: ' + fx.strip('"')) except SyntaxError: return [] scalex = width / (xend - xstart) xoff = left # conver x-value to coordinate coordx = lambda x: (x - xstart) * scalex + xoff scaley = height / (ytop - ybottom) yoff = bottom # conver y-value to coordinate coordy = lambda y: (ybottom - y) * scaley + yoff # step is the distance between nodes on x step = (xend - xstart) / (nodes - 1) third = step / 3.0 # step used in calculating derivatives ds = step * 0.001 # initialize function and derivative for 0; # they are carried over from one iteration to the next, to avoid extra function calculations. x0 = xstart y0 = f(xstart) # numerical derivative, using 0.001*step as the small differential x1 = xstart + ds # Second point AFTER first point (Good for first point) y1 = f(x1) dx0 = (x1 - x0) / ds dy0 = (y1 - y0) / ds # path array a = [] # Start curve a.append(['M ', [coordx(x0), coordy(y0)]]) for i in range(int(nodes - 1)): x1 = (i + 1) * step + xstart x2 = x1 - ds # Second point BEFORE first point (Good for last point) y1 = f(x1) y2 = f(x2) # numerical derivative dx1 = (x1 - x2) / ds dy1 = (y1 - y2) / ds # create curve a.append([' C ', [coordx(x0 + (dx0 * third)), coordy(y0 + (dy0 * third)), coordx(x1 - (dx1 * third)), coordy(y1 - (dy1 * third)), coordx(x1), coordy(y1)]]) # Next segment's start is this segment's end x0 = x1 y0 = y1 # Assume the function is smooth everywhere, so carry over the derivative too dx0 = dx1 dy0 = dy1 return a def offset(pathComp, dx, dy): for ctl in pathComp: for pt in ctl: pt[0] += dx pt[1] += dy def stretch(pathComp, xscale, yscale, org): for ctl in pathComp: for pt in ctl: pt[0] = org[0] + (pt[0] - org[0]) * xscale pt[1] = org[1] + (pt[1] - org[1]) * yscale class GuillocheContour(pathmodifier.PathModifier): def __init__(self): pathmodifier.PathModifier.__init__(self) self.OptionParser.add_option("--tab", action="store", type="string", dest="tab", default="contour", help="Active tab") self.OptionParser.add_option("--contourFunction", action="store", type="string", dest="contourFunction", default="sin", help="Function of the contour") self.OptionParser.add_option("--frequency", action="store", type="int", dest="frequency", default=10, help="Frequency of the function") self.OptionParser.add_option("--amplitude", action="store", type="int", dest="amplitude", default=1, help="Amplitude of the function") self.OptionParser.add_option("--phaseOffset", action="store", type="int", dest="phaseOffset", default=0, help="Phase offset of the function") self.OptionParser.add_option("--offset", action="store", type="int", dest="offset", default=0, help="Offset of the function") self.OptionParser.add_option("--nodes", action="store", type="int", dest="nodes", default=20, help="Count of nodes") self.OptionParser.add_option("--remove", action="store", type="inkbool", dest="remove", default=False, help="If True, control object will be removed") self.OptionParser.add_option("--strokeColor", action="store", type="string", dest="strokeColor", default=255, help="The line's color") self.OptionParser.add_option("--amplitude1", action="store", type="float", dest="amplitude1", default=0.0, help="Amplitude of first harmonic") self.OptionParser.add_option("--phase1", action="store", type="int", dest="phase1", default=0, help="Phase offset of first harmonic") self.OptionParser.add_option("--amplitude2", action="store", type="float", dest="amplitude2", default=0.0, help="Amplitude of second harmonic") self.OptionParser.add_option("--phase2", action="store", type="int", dest="phase2", default=0, help="Phase offset of second harmonic") self.OptionParser.add_option("--amplitude3", action="store", type="float", dest="amplitude3", default=0.0, help="Amplitude of third harmonic") self.OptionParser.add_option("--phase3", action="store", type="int", dest="phase3", default=0, help="Phase offset of third harmonic") self.OptionParser.add_option("--amplitude4", action="store", type="float", dest="amplitude4", default=0.0, help="Amplitude of fourth harmonic") self.OptionParser.add_option("--phase4", action="store", type="int", dest="phase4", default=0, help="Phase offset of fourth harmonic") self.OptionParser.add_option("--amplitude5", action="store", type="float", dest="amplitude5", default=0.0, help="Amplitude of fifth harmonic") self.OptionParser.add_option("--phase5", action="store", type="int", dest="phase5", default=0, help="Phase offset of fifth harmonic") def prepareSelectionList(self): self.skeletons = self.selected self.expandGroupsUnlinkClones(self.skeletons, True, False) self.objectsToPaths(self.skeletons) def linearizePath(self, skelPath, offs): comps, lengths = linearize(skelPath) self.skelCompIsClosed = isSkeletonClosed(comps) if (self.skelCompIsClosed and offs != 0): centroid = getPolygonCentroid(comps) for i in range(len(comps)): pt1 = comps[i] dist = bezmisc.pointdistance(centroid, pt1) comps[i] = getPtOnSeg(centroid, pt1, dist, dist + offs) if i > 0: lengths[i - 1] = bezmisc.pointdistance(comps[i - 1], comps[i]) return (comps, lengths) def getFunction(self, func): res = '' presetAmp1 = presetAmp2 = presetAmp3 = presetAmp4 = presetAmp5 = 0.0 presetPhOf1 = presetPhOf2 = presetPhOf3 = presetPhOf4 = presetPhOf5 = presetOffs = 0 if (func == 'sin' or func == 'cos'): return '(' + str(self.options.amplitude) + ') * ' + func + '(x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + '))' if func == 'env1': presetAmp1 = presetAmp3 = 0.495 elif func == 'env2': presetAmp1 = presetAmp3 = 0.65 presetPhOf1 = presetPhOf3 = 25 elif func == 'env3': presetAmp1 = 0.75 presetPhOf1 = 25 presetAmp3 = 0.24 presetPhOf3 = -25 elif func == 'env4': presetAmp1 = 1.105 presetAmp3 = 0.27625 presetPhOf3 = 50 elif func == 'env5': presetAmp1 = 0.37464375 presetPhOf1 = 25 presetAmp2 = 0.5655 presetAmp3 = 0.37464375 presetPhOf3 = -25 elif func == 'env6': presetAmp1 = 0.413725 presetPhOf1 = 25 presetAmp2 = 0.45695 presetPhOf2 = 50 presetAmp3 = 0.494 presetPhOf3 = -25 elif func == 'env7': presetAmp1 = 0.624 presetPhOf1 = 25 presetAmp2 = 0.312 presetAmp3 = 0.624 presetPhOf3 = 25 elif func == 'env8': presetAmp1 = 0.65 presetPhOf1 = 50 presetAmp2 = 0.585 presetAmp3 = 0.13 elif func == 'env9': presetAmp1 = 0.07605 presetPhOf1 = 25 presetAmp2 = 0.33345 presetPhOf2 = 50 presetAmp3 = 0.468 presetPhOf3 = -25 presetAmp4 = 0.32175 elif func == 'env10': presetAmp1 = 0.3575 presetPhOf1 = -25 presetAmp2 = 0.3575 presetAmp3 = 0.3575 presetPhOf3 = 25 presetAmp4 = 0.3575 presetPhOf4 = 50 elif func == 'env11': presetAmp1 = 0.65 presetPhOf1 = 25 presetAmp2 = 0.13 presetPhOf2 = 50 presetAmp3 = 0.26 presetPhOf3 = 25 presetAmp4 = 0.39 elif func == 'env12': presetAmp1 = 0.5525 presetPhOf1 = -25 presetAmp2 = 0.0414375 presetPhOf2 = 50 presetAmp3 = 0.15884375 presetPhOf3 = 25 presetAmp4 = 0.0966875 presetAmp5 = 0.28315625 presetPhOf5 = -25 harm1 = '(' + str(self.options.amplitude * (presetAmp1 + self.options.amplitude1)) + ') * cos(1 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf1 + self.options.phase1) / 100.0 * 2 * pi) + '))' harm2 = '(' + str(self.options.amplitude * (presetAmp2 + self.options.amplitude2)) + ') * cos(2 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf2 + self.options.phase2) / 100.0 * 2 * pi) + '))' harm3 = '(' + str(self.options.amplitude * (presetAmp3 + self.options.amplitude3)) + ') * cos(3 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf3 + self.options.phase3) / 100.0 * 2 * pi) + '))' harm4 = '(' + str(self.options.amplitude * (presetAmp4 + self.options.amplitude4)) + ') * cos(4 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf4 + self.options.phase4) / 100.0 * 2 * pi) + '))' harm5 = '(' + str(self.options.amplitude * (presetAmp5 + self.options.amplitude5)) + ') * cos(5 * (x + (' + str(self.options.phaseOffset / 100.0 * 2 * pi) + ')) - (' + str((presetPhOf5 + self.options.phase5) / 100.0 * 2 * pi) + '))' res = harm1 + ' + ' + harm2 + ' + ' + harm3 + ' + ' + harm4 + ' + ' + harm5 return res def lengthToTime(self, l): ''' Recieves an arc length l, and returns the index of the segment in self.skelComp containing the corresponding point, together with the position of the point on this segment. If the deformer is closed, do computations modulo the total length. ''' if self.skelCompIsClosed: l = l % sum(self.lengths) if l <= 0: return 0, l / self.lengths[0] i = 0 while (i < len(self.lengths)) and (self.lengths[i] <= l): l -= self.lengths[i] i += 1 t = l / self.lengths[min(i, len(self.lengths) - 1)] return (i, t) def applyDiffeo(self, bpt, vects=()): ''' The kernel of this stuff: bpt is a base point and for v in vectors, v'=v-p is a tangent vector at bpt. ''' s = bpt[0] - self.skelComp[0][0] i, t = self.lengthToTime(s) if i == len(self.skelComp) - 1: x, y = bezmisc.tpoint(self.skelComp[i - 1], self.skelComp[i], t + 1) dx = (self.skelComp[i][0] - self.skelComp[i - 1][0]) / self.lengths[-1] dy = (self.skelComp[i][1] - self.skelComp[i - 1][1]) / self.lengths[-1] else: x, y = bezmisc.tpoint(self.skelComp[i], self.skelComp[i + 1], t) dx = (self.skelComp[i + 1][0] - self.skelComp[i][0]) / self.lengths[i] dy = (self.skelComp[i + 1][1] - self.skelComp[i][1]) / self.lengths[i] vx = 0 vy = bpt[1] - self.skelComp[0][1] bpt[0] = x + vx * dx - vy * dy bpt[1] = y + vx * dy + vy * dx for v in vects: vx = v[0] - self.skelComp[0][0] - s vy = v[1] - self.skelComp[0][1] v[0] = x + vx * dx - vy * dy v[1] = y + vx * dy + vy * dx def effect(self): if len(self.options.ids) < 1: inkex.errormsg(_("This extension requires one selected path.")) return self.prepareSelectionList() for skeleton in self.skeletons.itervalues(): resPath = [] pattern = inkex.etree.Element(inkex.addNS('path','svg')) self.options.strokeHexColor, self.strokeOpacity = getColorAndOpacity(self.options.strokeColor) # Copy style of skeleton with setting color and opacity s = skeleton.get('style') if s: pattern.set('style', setColorAndOpacity(s, self.options.strokeHexColor, self.strokeOpacity)) skeletonPath = modifySkeletonPath(getSkeletonPath(skeleton.get('d'), self.options.offset)) self.skelComp, self.lengths = self.linearizePath(skeletonPath, self.options.offset) length = sum(self.lengths) patternWidth = length / self.options.frequency selectedFunction = self.getFunction(self.options.contourFunction) pattern.set('d', simplepath.formatPath(drawfunction(self.options.nodes, patternWidth, selectedFunction))) # Add path into SVG structure skeleton.getparent().append(pattern) if self.options.remove: skeleton.getparent().remove(skeleton) # Compute bounding box bbox = simpletransform.computeBBox([pattern]) width = bbox[1] - bbox[0] dx = width if dx < 0.01: exit(_("The total length of the pattern is too small.")) patternPath = cubicsuperpath.parsePath(pattern.get('d')) curPath = deepcopy(patternPath) xoffset = self.skelComp[0][0] - bbox[0] yoffset = self.skelComp[0][1] - (bbox[2] + bbox[3]) / 2 patternCopies = max(1, int(round(length / dx))) width = dx * patternCopies newPath = [] # Repeat pattern to cover whole skeleton for subPath in curPath: for i in range(0, patternCopies, 1): newPath.append(deepcopy(subPath)) offset(subPath, dx, 0) curPath = newPath # Offset pattern to the first node of the skeleton for subPath in curPath: offset(subPath, xoffset, yoffset) # Stretch pattern to whole skeleton for subPath in curPath: stretch(subPath, length / width, 1, self.skelComp[0]) for subPath in curPath: for ctlpt in subPath: self.applyDiffeo(ctlpt[1], (ctlpt[0], ctlpt[2])) # Check if there is a need to close path manually if self.skelCompIsClosed: firstPtX = round(curPath[0][0][1][0], 8) firstPtY = round(curPath[0][0][1][1], 8) finalPtX = round(curPath[-1][-1][1][0], 8) finalPtY = round(curPath[-1][-1][1][1], 8) if (firstPtX != finalPtX or firstPtY != finalPtY): curPath[-1].append(curPath[0][0]) resPath += curPath pattern.set('d', cubicsuperpath.formatPath(resPath)) if __name__ == '__main__': e = GuillocheContour() e.affect() # vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99