#! /usr/bin/env python """ living_hinge.py A module for creating lines to laser cut living hinges Copyright (C) 2013 Mark Endicott; drphonon@gmail.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. For a copy of the GNU General Public License write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ """ Change in version 0.2 Changed self.unittouu to self.unittouu and self.uutounit to self.uutounit to make it work with Inkscape 0.91 Thanks to Pete Prodoehl for pointing this out. """ """ Change in version 0.3 Add a direction option so the cuts can be done in the X or Y direction. Modification by Sylvain GARNAVAULT; garnav@wanadoo.fr """ __version__ = "0.3" import sys,inkex,simplestyle,gettext _ = gettext.gettext def drawS(parent, XYstring): # Draw lines from a list name='part' style = { 'stroke': '#000000', 'fill': 'none', 'stroke-width': self.unittouu("0.1 mm") } drw = {'style':simplestyle.formatStyle(style),inkex.addNS('label','inkscape'):name,'d':XYstring} inkex.etree.SubElement(parent, inkex.addNS('path','svg'), drw ) return class HingeCuts(inkex.Effect): def __init__(self): # Call the base class constructor. inkex.Effect.__init__(self) # Define options - Must match to the elements in the .inx file self.OptionParser.add_option('--direction',action='store',type='string', dest='direction',default='y',help='cuts direction') self.OptionParser.add_option('--unit',action='store',type='string', dest='unit',default='mm',help='units of measurement') self.OptionParser.add_option('--cut_length',action='store',type='float', dest='cut_length',default=0,help='length of the cuts for the hinge.') self.OptionParser.add_option('--gap_length',action='store',type='float', dest='gap_length',default=0,help='separation distance between successive hinge cuts.') self.OptionParser.add_option('--sep_distance',action='store',type='float', dest='sep_distance',default=0,help='distance between successive lines of hinge cuts.') def effect(self): unit=self.options.unit # which direction are we cutting dir = self.options.direction # starting cut length. Will be adjusted for get an integer number of cuts in the y-direction. l = self.unittouu(str(self.options.cut_length) + unit) # cut separation in the y-direction d = self.unittouu(str(self.options.gap_length) + unit) # starting separation between lines of cuts in the x-direction. Will be adjusted to get an integer # number of cut lines in the x-direction. dd = self.unittouu(str(self.options.sep_distance) + unit) # get selected nodes if self.selected: # put lines on the current layer parent = self.current_layer for id, node in self.selected.iteritems(): # inkex.debug("id:" + id) # for key in node.attrib.keys(): # inkex.debug(key + ": " + node.get(key)) x = float(node.get("x")) dx = float(node.get("width")) y = float(node.get("y")) dy = float(node.get("height")) # calculate the cut lines for the hinge if (dir=="y"): lines, l_actual, d_actual, dd_actual = self.calcYCutLines(x, y, dx, dy, l, d, dd) else: lines, l_actual, d_actual, dd_actual = self.calcXCutLines(x, y, dx, dy, l, d, dd) # all the lines are one path. Prepare the string that describes the path. s = '' for line in lines: s = s + "M %s, %s L %s, %s " % (line['x1'], line['y1'], line['x2'], line['y2']) # add the path to the document style = { 'stroke': '#000000', 'fill': 'none', 'stroke-width': self.unittouu("0.1 mm")} drw = {'style':simplestyle.formatStyle(style), 'd': s} hinge = inkex.etree.SubElement(parent, inkex.addNS('path', 'svg'), drw) # add a description element to hold the parameters used to create the cut lines desc = inkex.etree.SubElement(hinge, inkex.addNS('desc', 'svg')) desc.text = "Hinge cut parameters: actual(requested)\n" \ "cut length: %.2f %s (%.2f %s)\n" \ "gap length: %.2f %s (%.2f %s)\n" \ "separation distance: %.2f %s (%.2f %s)" % (self.uutounit(l_actual, unit), unit, self.uutounit(l, unit), unit, self.uutounit(d_actual, unit), unit, self.uutounit(d, unit), unit, self.uutounit(dd_actual, unit), unit, self.uutounit(dd, unit), unit) else: inkex.debug("No rectangle(s) have been selected.") def calcYCutLines(self, x, y, dx, dy, l, d, dd): """ Return a list of cut lines as dicts. Each dict contains the end points for one cut line. [{x1, y1, x2, y2}, ... ] Parameters x, y: the coordinates of the lower left corner of the bounding rect dx, dy: width and height of the bounding rect l: the nominal length of a cut line d: the separation between cut lines in the y-direction dd: the nominal separation between cut lines in the x-direction l will be adjusted so that there is an integral number of cuts in the y-direction. dd will be adjusted so that there is an integral number of cuts in the x-direction. """ ret = [] # use l as a starting guess. Adjust it so that we get an integer number of cuts in the y-direction # First compute the number of cuts in the y-direction using l. This will not in general be an integer. p = (dy-d)/(d+l) #round p to the nearest integer p = round(p) #compute the new l that will result in p cuts in the y-direction. l = (dy-d)/p - d # use dd as a starting guess. Adjust it so that we get an even integer number of cut lines in the x-direction. p = dx/dd p = round(p) if p % 2 == 1: p = p + 1 dd = dx/p # # Column A cuts # currx = 0 donex = False while not donex: doney = False starty = 0 endy = (l + d)/2.0 while not doney: if endy >= dy: endy = dy # Add the end points of the line ret.append({'x1' : x + currx, 'y1' : y + starty, 'x2': x + currx, 'y2': y + endy}) starty = endy + d endy = starty + l if starty >= dy: doney = True currx = currx + dd * 2.0 if currx - dx > dd: donex = True # inkex.debug("lastx: " + str(lastx) + "; currx: " + str(currx)) # #Column B cuts # currx = dd donex = False while not donex: doney = False starty = d endy = starty + l while not doney: if endy >= dy: endy = dy # create a line ret.append({'x1' : x + currx, 'y1' : y + starty, 'x2': x + currx, 'y2': y + endy}) starty = endy + d endy = starty + l if starty >= dy: doney = True currx = currx + dd*2.0 if currx > dx: donex = True return (ret, l, d, dd) def calcXCutLines(self, x, y, dx, dy, l, d, dd): """ Return a list of cut lines as dicts. Each dict contains the end points for one cut line. [{x1, y1, x2, y2}, ... ] Parameters x, y: the coordinates of the lower left corner of the bounding rect dx, dy: width and height of the bounding rect l: the nominal length of a cut line d: the separation between cut lines in the x-direction dd: the nominal separation between cut lines in the y-direction l will be adjusted so that there is an integral number of cuts in the x-direction. dd will be adjusted so that there is an integral number of cuts in the y-direction. """ ret = [] # use l as a starting guess. Adjust it so that we get an integer number of cuts in the y-direction # First compute the number of cuts in the x-direction using l. This will not in general be an integer. p = (dx-d)/(d+l) #round p to the nearest integer p = round(p) #compute the new l that will result in p cuts in the x-direction. l = (dx-d)/p - d # use dd as a starting guess. Adjust it so that we get an even integer number of cut lines in the y-direction. p = dy/dd p = round(p) if p % 2 == 1: p = p + 1 dd = dy/p # # Rows A cuts # curry = 0 doney = False while not doney: donex = False startx = 0 endx = (l + d)/2.0 while not donex: if endx >= dx: endx = dx # Add the end points of the line ret.append({'x1' : x + startx, 'y1' : y + curry, 'x2': x + endx, 'y2': y + curry}) startx = endx + d endx = startx + l if startx >= dx: donex = True curry = curry + dd * 2.0 if curry - dy > dd: doney = True # # Rows B cuts # curry = dd doney = False while not doney: donex = False startx = d endx = startx + l while not donex: if endx >= dx: endx = dx # create a line ret.append({'x1' : x + startx, 'y1' : y + curry, 'x2': x + endx, 'y2': y + curry}) startx = endx + d endx = startx + l if startx >= dx: donex = True curry = curry + dd*2.0 if curry > dy: doney = True return (ret, l, d, dd) # Create effect instance and apply it. effect = HingeCuts() effect.affect()