This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.

266 lines
12 KiB
Python
Raw Normal View History

2021-07-23 02:36:56 +02:00
#!/usr/bin/env python3
'''
Globe rendering extension for Inkscape
Copyright (C) 2009 Gerrit Karius
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
About the Globe rendering extension:
'''
from __future__ import division
import inkex
from math import *
from lxml import etree
#TODO: put the globe in the center of the view canvas
def draw_ellipse_rotated(cx,cy,rx,ry, width, fill, name, parent, rotationAngle):
a = cos(rotationAngle)
b = sin(rotationAngle)
c = -sin(rotationAngle)
d = cos(rotationAngle)
e = -(a*cx + c*cy) + cx
f = -(b*cx + d*cy) + cy
style = { 'stroke': '#000000', 'stroke-width':str(width), 'fill':fill}
if rx == 0:
x1 = cx
x2 = cx
y1 = cy - ry
y2 = cy + ry
circle_attribs = {'style':str(inkex.Style(style)),
inkex.addNS('label','inkscape'):name,
'd':'M '+str(x1)+','+str(y1)+' L '+str(x2)+','+str(y2),
'transform':'matrix('+str(a)+','+str(b)+','+str(c)+','+str(d)+','+str(e)+','+str(f)+')'}
elif ry == 0:
x1 = cx - rx
x2 = cx + rx
y1 = cy
y2 = cy
circle_attribs = {'style':str(inkex.Style(style)),
inkex.addNS('label','inkscape'):name,
'd':'M '+str(x1)+','+str(y1)+' L '+str(x2)+','+str(y2),
'transform':'matrix('+str(a)+','+str(b)+','+str(c)+','+str(d)+','+str(e)+','+str(f)+')'}
else:
circle_attribs = {'style':str(inkex.Style(style)),
inkex.addNS('label','inkscape'):name,
inkex.addNS('cx','sodipodi'):str(cx),
inkex.addNS('cy','sodipodi'):str(cy),
inkex.addNS('rx','sodipodi'):str(rx),
inkex.addNS('ry','sodipodi'):str(ry),
inkex.addNS('type','sodipodi'):'arc',
'transform':'matrix('+str(a)+','+str(b)+','+str(c)+','+str(d)+','+str(e)+','+str(f)+')'}
etree.SubElement(parent, inkex.addNS('path','svg'), circle_attribs)
def draw_ellipse_segment_rotated(cx,cy,rx,ry, width, fill, name, parent, rotationAngle, segmentAngleStart, segmentAngleEnd):
a = cos(rotationAngle)
b = sin(rotationAngle)
c = -sin(rotationAngle)
d = cos(rotationAngle)
e = -(a*cx + c*cy) + cx
f = -(b*cx + d*cy) + cy
style = { 'stroke': '#000000', 'stroke-width':str(width), 'fill':fill}
if rx == 0:
x1 = cx
x2 = cx
y1 = cy - ry
y2 = cy + ry
circle_attribs = {'style':str(inkex.Style(style)),
inkex.addNS('label','inkscape'):name,
'd':'M '+str(x1)+','+str(y1)+' L '+str(x2)+','+str(y2),
'transform':'matrix('+str(a)+','+str(b)+','+str(c)+','+str(d)+','+str(e)+','+str(f)+')'}
elif ry == 0:
x1 = cx - rx
x2 = cx + rx
y1 = cy
y2 = cy
circle_attribs = {'style':str(inkex.Style(style)),
inkex.addNS('label','inkscape'):name,
'd':'M '+str(x1)+','+str(y1)+' L '+str(x2)+','+str(y2),
'transform':'matrix('+str(a)+','+str(b)+','+str(c)+','+str(d)+','+str(e)+','+str(f)+')'}
else:
circle_attribs = {'style':str(inkex.Style(style)),
inkex.addNS('label','inkscape'):name,
inkex.addNS('cx','sodipodi'):str(cx),
inkex.addNS('cy','sodipodi'):str(cy),
inkex.addNS('rx','sodipodi'):str(rx),
inkex.addNS('ry','sodipodi'):str(ry),
inkex.addNS('start','sodipodi'):str(segmentAngleStart),
inkex.addNS('end','sodipodi'):str(segmentAngleEnd),
inkex.addNS('open','sodipodi'):'true',
inkex.addNS('type','sodipodi'):'arc',
'transform':'matrix('+str(a)+','+str(b)+','+str(c)+','+str(d)+','+str(e)+','+str(f)+')'}
etree.SubElement(parent, inkex.addNS('path','svg'), circle_attribs)
class Globe(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--longitudeLineCount", type=int, default=15, help="Number of longitude lines")
pars.add_argument("--latitudeLineCount", type=int, default=15, help="Number of latitude lines")
pars.add_argument("--rotationXDegrees", type=float, default=45, help="Rotation around X axis (degrees)")
pars.add_argument("--rotationYDegrees", type=float, default=-45, help="Rotation around Y axis (degrees)")
pars.add_argument("--isSeeThrough", type=inkex.Boolean, default=False, help="Is the globe see-through")
def effect(self):
name = 'globe'
# globe fill and stroke style
fill = 'none'
width = 1
#input parameters - globe center and radius
cyb = 500.0
cxb = 500.0
rb = 100.0
longitudeRotationAngleDegrees = float(self.options.rotationYDegrees)
tiltForwardAngleDegrees = float(self.options.rotationXDegrees)
# inputs range fixing
# tiltForwardAngle is adjusted to vary from 0 <= angle < pi
if tiltForwardAngleDegrees >= 180.0:
tiltForwardAngleDegrees -= 180.0
elif tiltForwardAngleDegrees < 180.0:
tiltForwardAngleDegrees += 180.0
if self.options.longitudeLineCount > 0:
angleSpacingLongitudeLinesDegrees = 180.0 / float(self.options.longitudeLineCount);
# longitudeAngle is wrapped to vary from 0 <= angle < angleSpacingLongitudeLines.
while longitudeRotationAngleDegrees < 0:
longitudeRotationAngleDegrees += angleSpacingLongitudeLinesDegrees
while longitudeRotationAngleDegrees >= angleSpacingLongitudeLinesDegrees:
longitudeRotationAngleDegrees -= angleSpacingLongitudeLinesDegrees
# units conversion from degrees to radians
tiltForwardAngle = tiltForwardAngleDegrees * pi / 180.0;
initialAngleLongitudeLines = longitudeRotationAngleDegrees * pi / 180.0
# derived parameters
rxb = rb
ryb = rb
#
# start drawing
#
# create the group to put the globe in
group_attribs = {inkex.addNS('label','inkscape'):name}
parent = etree.SubElement(self.svg.get_current_layer(), 'g', group_attribs)
# draw the outside border
draw_ellipse_rotated(cxb,cyb,rxb,ryb, width, fill, 'border', parent, 0)
# draw the longitude lines
# elipse #0 corresponds to ring on the front (visible only as a straight vertical line)
# elipse #n-1 corresponds to the ring that is almost 180 degrees away
# elipse #n/2 corresponds to ring around the side (overlaps with globe boundary) (only if n is even)
if self.options.longitudeLineCount > 0:
angleSpacingLongitudeLines = pi / float(self.options.longitudeLineCount);
yOfPole = ryb * cos(tiltForwardAngle)
for i in range(0, self.options.longitudeLineCount):
lineName = 'longitude' + str(i)
# longitudeAngle is always from 0 to pi.
# rotation angle is always from 0 to pi.
# rx is never negative.
longitudeAngle = ((float(i)) * angleSpacingLongitudeLines) + initialAngleLongitudeLines
if tiltForwardAngleDegrees == 0 or tiltForwardAngleDegrees == 180.0:
if longitudeAngle < pi/2:
rotationAngle = 0.0
else:
rotationAngle = pi
rx = rxb * sin(longitudeAngle)
arcStart = pi/2
arcEnd = -pi/2
else:
rotationAngle = acos(cos(longitudeAngle) / sqrt(1 - pow(sin(longitudeAngle)*cos(tiltForwardAngle), 2)))
rx = rxb * sin(longitudeAngle) * cos(tiltForwardAngle)
if rx < 0:
rx = -rx
arcStart = -pi/2
arcEnd = pi/2
else:
arcStart = pi/2
arcEnd = -pi/2
ry = ryb
cx = cxb
cy = cyb
if self.options.isSeeThrough:
draw_ellipse_rotated(cx,cy,rx,ry, width, fill, lineName, parent, rotationAngle)
else:
draw_ellipse_segment_rotated(cx,cy,rx,ry, width, fill, lineName, parent, rotationAngle, arcStart, arcEnd)
# draw the latitude lines
# elipse #0 corresponds to ring closest to north pole.
# elipse #n-1 corresponds to ring closest to south pole.
# equator is ring #(n-1)/2 (only if n is odd).
if self.options.latitudeLineCount > 0:
angleSpacingLatitudeLines = pi / (1.0 + float(self.options.latitudeLineCount));
yOfPole = ryb * cos(tiltForwardAngle)
for i in range(0, self.options.latitudeLineCount):
lineName = 'latitude' + str(i)
# angleOfCurrentLatitudeLine is always from 0 to pi.
# tiltForwardAngle is always from 0 to pi.
# ry is never negative.
angleOfCurrentLatitudeLine = float(i + 1) * angleSpacingLatitudeLines
rx = rxb * sin(angleOfCurrentLatitudeLine)
ry = rx * sin(tiltForwardAngle)
cx = cxb
cy = cyb - yOfPole*cos(angleOfCurrentLatitudeLine)
if self.options.isSeeThrough:
#inkex.utils.debug(cx)
#inkex.utils.debug(cy)
#inkex.utils.debug(rx)
#inkex.utils.debug(ry)
#inkex.utils.debug(width)
#inkex.utils.debug(fill)
#inkex.utils.debug(lineName)
#inkex.utils.debug(parent)
draw_ellipse_rotated(cx,cy,rx,ry, width, fill, lineName, parent, 0)
else:
if tiltForwardAngle > pi/2:
# tilt away from viewaer
if rxb * cos(angleOfCurrentLatitudeLine) / cos(tiltForwardAngle) > rxb:
# elipse is not visible
pass
else:
if rxb * cos(angleOfCurrentLatitudeLine) / cos(tiltForwardAngle) < -rxb:
# elipse is all visible
segmentAngle = pi
else:
# elipse is only partially visible
segmentAngle = acos(max(-1,min(1, -tan(tiltForwardAngle) / tan(angleOfCurrentLatitudeLine))))
draw_ellipse_segment_rotated(cx,cy,rx,ry, width, fill, lineName, parent, 0, pi/2+segmentAngle, pi/2-segmentAngle)
else:
# tilt towards viewer
if rxb * cos(angleOfCurrentLatitudeLine) / cos(tiltForwardAngle) < -rxb:
# elipse is not visible
pass
else:
if rxb * cos(angleOfCurrentLatitudeLine) / cos(tiltForwardAngle) > rxb:
# elipse is all visible
segmentAngle = pi
else:
# elipse is only partially visible
segmentAngle = acos(max(-1,min(1, tan(tiltForwardAngle) / tan(angleOfCurrentLatitudeLine))))
draw_ellipse_segment_rotated(cx,cy,rx,ry, width, fill, lineName, parent, 0, -pi/2+segmentAngle, -pi/2-segmentAngle)
if __name__ == '__main__':
Globe().run()