This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.

184 lines
5.8 KiB
Python
Raw Normal View History

2020-07-30 01:16:18 +02:00
# Copyright (C) 2011-2019 by
#
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# Michael E. Rose <Michael.Ernst.Rose@gmail.com>
#
# All rights reserved.
# BSD license.
from itertools import chain, count
import networkx as nx
from networkx.utils import make_str, to_tuple
__all__ = ['node_link_data', 'node_link_graph']
_attrs = dict(source='source', target='target', name='id',
key='key', link='links')
def node_link_data(G, attrs=None):
"""Returns data in node-link format that is suitable for JSON serialization
and use in Javascript documents.
Parameters
----------
G : NetworkX graph
attrs : dict
A dictionary that contains five keys 'source', 'target', 'name',
'key' and 'link'. The corresponding values provide the attribute
names for storing NetworkX-internal graph data. The values should
be unique. Default value::
dict(source='source', target='target', name='id',
key='key', link='links')
If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.
Returns
-------
data : dict
A dictionary with node-link formatted data.
Raises
------
NetworkXError
If values in attrs are not unique.
Examples
--------
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([('A', 'B')])
>>> data1 = json_graph.node_link_data(G)
>>> H = nx.gn_graph(2)
>>> data2 = json_graph.node_link_data(H, {'link': 'edges', 'source': 'from', 'target': 'to'})
To serialize with json
>>> import json
>>> s1 = json.dumps(data1)
>>> s2 = json.dumps(data2, default={'link': 'edges', 'source': 'from', 'target': 'to'})
Notes
-----
Graph, node, and link attributes are stored in this format. Note that
attribute keys will be converted to strings in order to comply with JSON.
Attribute 'key' is only used for multigraphs.
See Also
--------
node_link_graph, adjacency_data, tree_data
"""
multigraph = G.is_multigraph()
# Allow 'attrs' to keep default values.
if attrs is None:
attrs = _attrs
else:
attrs.update({k: v for (k, v) in _attrs.items() if k not in attrs})
name = attrs['name']
source = attrs['source']
target = attrs['target']
links = attrs['link']
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
key = None if not multigraph else attrs['key']
if len({source, target, key}) < 3:
raise nx.NetworkXError('Attribute names are not unique.')
data = {'directed': G.is_directed(), 'multigraph': multigraph, 'graph': G.graph,
'nodes': [dict(chain(G.nodes[n].items(), [(name, n)])) for n in G]}
if multigraph:
data[links] = [
dict(chain(d.items(),
[(source, u), (target, v), (key, k)]))
for u, v, k, d in G.edges(keys=True, data=True)]
else:
data[links] = [
dict(chain(d.items(),
[(source, u), (target, v)]))
for u, v, d in G.edges(data=True)]
return data
def node_link_graph(data, directed=False, multigraph=True, attrs=None):
"""Returns graph from node-link data format.
Parameters
----------
data : dict
node-link formatted graph data
directed : bool
If True, and direction not specified in data, return a directed graph.
multigraph : bool
If True, and multigraph not specified in data, return a multigraph.
attrs : dict
A dictionary that contains five keys 'source', 'target', 'name',
'key' and 'link'. The corresponding values provide the attribute
names for storing NetworkX-internal graph data. Default value:
dict(source='source', target='target', name='id',
key='key', link='links')
Returns
-------
G : NetworkX graph
A NetworkX graph object
Examples
--------
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([('A', 'B')])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)
Notes
-----
Attribute 'key' is only used for multigraphs.
See Also
--------
node_link_data, adjacency_data, tree_data
"""
# Allow 'attrs' to keep default values.
if attrs is None:
attrs = _attrs
else:
attrs.update({k: v for k, v in _attrs.items() if k not in attrs})
multigraph = data.get('multigraph', multigraph)
directed = data.get('directed', directed)
if multigraph:
graph = nx.MultiGraph()
else:
graph = nx.Graph()
if directed:
graph = graph.to_directed()
name = attrs['name']
source = attrs['source']
target = attrs['target']
links = attrs['link']
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
key = None if not multigraph else attrs['key']
graph.graph = data.get('graph', {})
c = count()
for d in data['nodes']:
node = to_tuple(d.get(name, next(c)))
nodedata = dict((make_str(k), v) for k, v in d.items() if k != name)
graph.add_node(node, **nodedata)
for d in data[links]:
src = tuple(d[source]) if isinstance(d[source], list) else d[source]
tgt = tuple(d[target]) if isinstance(d[target], list) else d[target]
if not multigraph:
edgedata = dict((make_str(k), v) for k, v in d.items()
if k != source and k != target)
graph.add_edge(src, tgt, **edgedata)
else:
ky = d.get(key, None)
edgedata = dict((make_str(k), v) for k, v in d.items()
if k != source and k != target and k != key)
graph.add_edge(src, tgt, ky, **edgedata)
return graph