This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.

241 lines
9.2 KiB
Python
Raw Normal View History

2020-07-30 01:16:18 +02:00
import pytest
import networkx as nx
from networkx.testing import assert_graphs_equal
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
class TestConvertNumpy(object):
@classmethod
def setup_class(cls):
global np, sp, sparse, np_assert_equal
np = pytest.importorskip('numpy')
sp = pytest.importorskip('scipy')
sparse = sp.sparse
np_assert_equal = np.testing.assert_equal
def setup_method(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph)
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
def test_exceptions(self):
class G(object):
format = None
pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G)
def create_weighted(self, G):
g = cycle_graph(4)
e = list(g.edges())
source = [u for u, v in e]
dest = [v for u, v in e]
weight = [s + 10 for s in source]
ex = zip(source, dest, weight)
G.add_weighted_edges_from(ex)
return G
def assert_isomorphic(self, G1, G2):
assert nx.is_isomorphic(G1, G2)
def identity_conversion(self, G, A, create_using):
GG = nx.from_scipy_sparse_matrix(A, create_using=create_using)
self.assert_isomorphic(G, GG)
GW = nx.to_networkx_graph(A, create_using=create_using)
self.assert_isomorphic(G, GW)
GI = nx.empty_graph(0, create_using).__class__(A)
self.assert_isomorphic(G, GI)
ACSR = A.tocsr()
GI = nx.empty_graph(0, create_using).__class__(ACSR)
self.assert_isomorphic(G, GI)
ACOO = A.tocoo()
GI = nx.empty_graph(0, create_using).__class__(ACOO)
self.assert_isomorphic(G, GI)
ACSC = A.tocsc()
GI = nx.empty_graph(0, create_using).__class__(ACSC)
self.assert_isomorphic(G, GI)
AD = A.todense()
GI = nx.empty_graph(0, create_using).__class__(AD)
self.assert_isomorphic(G, GI)
AA = A.toarray()
GI = nx.empty_graph(0, create_using).__class__(AA)
self.assert_isomorphic(G, GI)
def test_shape(self):
"Conversion from non-square sparse array."
A = sp.sparse.lil_matrix([[1, 2, 3], [4, 5, 6]])
pytest.raises(nx.NetworkXError, nx.from_scipy_sparse_matrix, A)
def test_identity_graph_matrix(self):
"Conversion from graph to sparse matrix to graph."
A = nx.to_scipy_sparse_matrix(self.G1)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_digraph_matrix(self):
"Conversion from digraph to sparse matrix to digraph."
A = nx.to_scipy_sparse_matrix(self.G2)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_weighted_graph_matrix(self):
"""Conversion from weighted graph to sparse matrix to weighted graph."""
A = nx.to_scipy_sparse_matrix(self.G3)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_digraph_matrix(self):
"""Conversion from weighted digraph to sparse matrix to weighted digraph."""
A = nx.to_scipy_sparse_matrix(self.G4)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_nodelist(self):
"""Conversion from graph to sparse matrix to graph with nodelist."""
P4 = path_graph(4)
P3 = path_graph(3)
nodelist = list(P3.nodes())
A = nx.to_scipy_sparse_matrix(P4, nodelist=nodelist)
GA = nx.Graph(A)
self.assert_isomorphic(GA, P3)
# Make nodelist ambiguous by containing duplicates.
nodelist += [nodelist[0]]
pytest.raises(nx.NetworkXError, nx.to_numpy_matrix, P3,
nodelist=nodelist)
def test_weight_keyword(self):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3))
for n in range(3))
P4 = path_graph(4)
A = nx.to_scipy_sparse_matrix(P4)
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
np_assert_equal(0.5 * A.todense(),
nx.to_scipy_sparse_matrix(WP4).todense())
np_assert_equal(0.3 * A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight='other').todense())
def test_format_keyword(self):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3))
for n in range(3))
P4 = path_graph(4)
A = nx.to_scipy_sparse_matrix(P4, format='csr')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
A = nx.to_scipy_sparse_matrix(P4, format='csc')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
A = nx.to_scipy_sparse_matrix(P4, format='coo')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
A = nx.to_scipy_sparse_matrix(P4, format='bsr')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
A = nx.to_scipy_sparse_matrix(P4, format='lil')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
A = nx.to_scipy_sparse_matrix(P4, format='dia')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
A = nx.to_scipy_sparse_matrix(P4, format='dok')
np_assert_equal(A.todense(),
nx.to_scipy_sparse_matrix(WP4, weight=None).todense())
def test_format_keyword_raise(self):
with pytest.raises(nx.NetworkXError):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3))
for n in range(3))
P4 = path_graph(4)
nx.to_scipy_sparse_matrix(P4, format='any_other')
def test_null_raise(self):
with pytest.raises(nx.NetworkXError):
nx.to_scipy_sparse_matrix(nx.Graph())
def test_empty(self):
G = nx.Graph()
G.add_node(1)
M = nx.to_scipy_sparse_matrix(G)
np_assert_equal(M.todense(), np.matrix([[0]]))
def test_ordering(self):
G = nx.DiGraph()
G.add_edge(1, 2)
G.add_edge(2, 3)
G.add_edge(3, 1)
M = nx.to_scipy_sparse_matrix(G, nodelist=[3, 2, 1])
np_assert_equal(M.todense(), np.matrix([[0, 0, 1], [1, 0, 0], [0, 1, 0]]))
def test_selfloop_graph(self):
G = nx.Graph([(1, 1)])
M = nx.to_scipy_sparse_matrix(G)
np_assert_equal(M.todense(), np.matrix([[1]]))
def test_selfloop_digraph(self):
G = nx.DiGraph([(1, 1)])
M = nx.to_scipy_sparse_matrix(G)
np_assert_equal(M.todense(), np.matrix([[1]]))
def test_from_scipy_sparse_matrix_parallel_edges(self):
"""Tests that the :func:`networkx.from_scipy_sparse_matrix` function
interprets integer weights as the number of parallel edges when
creating a multigraph.
"""
A = sparse.csr_matrix([[1, 1], [1, 2]])
# First, with a simple graph, each integer entry in the adjacency
# matrix is interpreted as the weight of a single edge in the graph.
expected = nx.DiGraph()
edges = [(0, 0), (0, 1), (1, 0)]
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
expected.add_edge(1, 1, weight=2)
actual = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
create_using=nx.DiGraph)
assert_graphs_equal(actual, expected)
actual = nx.from_scipy_sparse_matrix(A, parallel_edges=False,
create_using=nx.DiGraph)
assert_graphs_equal(actual, expected)
# Now each integer entry in the adjacency matrix is interpreted as the
# number of parallel edges in the graph if the appropriate keyword
# argument is specified.
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
expected = nx.MultiDiGraph()
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
actual = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
create_using=nx.MultiDiGraph)
assert_graphs_equal(actual, expected)
expected = nx.MultiDiGraph()
expected.add_edges_from(set(edges), weight=1)
# The sole self-loop (edge 0) on vertex 1 should have weight 2.
expected[1][1][0]['weight'] = 2
actual = nx.from_scipy_sparse_matrix(A, parallel_edges=False,
create_using=nx.MultiDiGraph)
assert_graphs_equal(actual, expected)
def test_symmetric(self):
"""Tests that a symmetric matrix has edges added only once to an
undirected multigraph when using
:func:`networkx.from_scipy_sparse_matrix`.
"""
A = sparse.csr_matrix([[0, 1], [1, 0]])
G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph)
expected = nx.MultiGraph()
expected.add_edge(0, 1, weight=1)
assert_graphs_equal(G, expected)