176 lines
6.5 KiB
Python
176 lines
6.5 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
====================
|
||
|
Biadjacency matrices
|
||
|
====================
|
||
|
"""
|
||
|
# Copyright (C) 2013-2019 by
|
||
|
# Aric Hagberg <hagberg@lanl.gov>
|
||
|
# Dan Schult <dschult@colgate.edu>
|
||
|
# Pieter Swart <swart@lanl.gov>
|
||
|
# All rights reserved.
|
||
|
# BSD license.
|
||
|
import itertools
|
||
|
from networkx.convert_matrix import _generate_weighted_edges
|
||
|
import networkx as nx
|
||
|
__author__ = """\n""".join(['Jordi Torrents <jtorrents@milnou.net>',
|
||
|
'Aric Hagberg <aric.hagberg@gmail.com>'])
|
||
|
__all__ = ['biadjacency_matrix', 'from_biadjacency_matrix']
|
||
|
|
||
|
|
||
|
def biadjacency_matrix(G, row_order, column_order=None,
|
||
|
dtype=None, weight='weight', format='csr'):
|
||
|
r"""Returns the biadjacency matrix of the bipartite graph G.
|
||
|
|
||
|
Let `G = (U, V, E)` be a bipartite graph with node sets
|
||
|
`U = u_{1},...,u_{r}` and `V = v_{1},...,v_{s}`. The biadjacency
|
||
|
matrix [1]_ is the `r` x `s` matrix `B` in which `b_{i,j} = 1`
|
||
|
if, and only if, `(u_i, v_j) \in E`. If the parameter `weight` is
|
||
|
not `None` and matches the name of an edge attribute, its value is
|
||
|
used instead of 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
row_order : list of nodes
|
||
|
The rows of the matrix are ordered according to the list of nodes.
|
||
|
|
||
|
column_order : list, optional
|
||
|
The columns of the matrix are ordered according to the list of nodes.
|
||
|
If column_order is None, then the ordering of columns is arbitrary.
|
||
|
|
||
|
dtype : NumPy data-type, optional
|
||
|
A valid NumPy dtype used to initialize the array. If None, then the
|
||
|
NumPy default is used.
|
||
|
|
||
|
weight : string or None, optional (default='weight')
|
||
|
The edge data key used to provide each value in the matrix.
|
||
|
If None, then each edge has weight 1.
|
||
|
|
||
|
format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
|
||
|
The type of the matrix to be returned (default 'csr'). For
|
||
|
some algorithms different implementations of sparse matrices
|
||
|
can perform better. See [2]_ for details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
M : SciPy sparse matrix
|
||
|
Biadjacency matrix representation of the bipartite graph G.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
No attempt is made to check that the input graph is bipartite.
|
||
|
|
||
|
For directed bipartite graphs only successors are considered as neighbors.
|
||
|
To obtain an adjacency matrix with ones (or weight values) for both
|
||
|
predecessors and successors you have to generate two biadjacency matrices
|
||
|
where the rows of one of them are the columns of the other, and then add
|
||
|
one to the transpose of the other.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
adjacency_matrix
|
||
|
from_biadjacency_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
|
||
|
.. [2] Scipy Dev. References, "Sparse Matrices",
|
||
|
https://docs.scipy.org/doc/scipy/reference/sparse.html
|
||
|
"""
|
||
|
from scipy import sparse
|
||
|
nlen = len(row_order)
|
||
|
if nlen == 0:
|
||
|
raise nx.NetworkXError("row_order is empty list")
|
||
|
if len(row_order) != len(set(row_order)):
|
||
|
msg = "Ambiguous ordering: `row_order` contained duplicates."
|
||
|
raise nx.NetworkXError(msg)
|
||
|
if column_order is None:
|
||
|
column_order = list(set(G) - set(row_order))
|
||
|
mlen = len(column_order)
|
||
|
if len(column_order) != len(set(column_order)):
|
||
|
msg = "Ambiguous ordering: `column_order` contained duplicates."
|
||
|
raise nx.NetworkXError(msg)
|
||
|
|
||
|
row_index = dict(zip(row_order, itertools.count()))
|
||
|
col_index = dict(zip(column_order, itertools.count()))
|
||
|
|
||
|
if G.number_of_edges() == 0:
|
||
|
row, col, data = [], [], []
|
||
|
else:
|
||
|
row, col, data = zip(*((row_index[u], col_index[v], d.get(weight, 1))
|
||
|
for u, v, d in G.edges(row_order, data=True)
|
||
|
if u in row_index and v in col_index))
|
||
|
M = sparse.coo_matrix((data, (row, col)),
|
||
|
shape=(nlen, mlen), dtype=dtype)
|
||
|
try:
|
||
|
return M.asformat(format)
|
||
|
# From Scipy 1.1.0, asformat will throw a ValueError instead of an
|
||
|
# AttributeError if the format if not recognized.
|
||
|
except (AttributeError, ValueError):
|
||
|
raise nx.NetworkXError("Unknown sparse matrix format: %s" % format)
|
||
|
|
||
|
|
||
|
def from_biadjacency_matrix(A, create_using=None, edge_attribute='weight'):
|
||
|
r"""Creates a new bipartite graph from a biadjacency matrix given as a
|
||
|
SciPy sparse matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A: scipy sparse matrix
|
||
|
A biadjacency matrix representation of a graph
|
||
|
|
||
|
create_using: NetworkX graph
|
||
|
Use specified graph for result. The default is Graph()
|
||
|
|
||
|
edge_attribute: string
|
||
|
Name of edge attribute to store matrix numeric value. The data will
|
||
|
have the same type as the matrix entry (int, float, (real,imag)).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The nodes are labeled with the attribute `bipartite` set to an integer
|
||
|
0 or 1 representing membership in part 0 or part 1 of the bipartite graph.
|
||
|
|
||
|
If `create_using` is an instance of :class:`networkx.MultiGraph` or
|
||
|
:class:`networkx.MultiDiGraph` and the entries of `A` are of
|
||
|
type :class:`int`, then this function returns a multigraph (of the same
|
||
|
type as `create_using`) with parallel edges. In this case, `edge_attribute`
|
||
|
will be ignored.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
biadjacency_matrix
|
||
|
from_numpy_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
[1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
|
||
|
"""
|
||
|
G = nx.empty_graph(0, create_using)
|
||
|
n, m = A.shape
|
||
|
# Make sure we get even the isolated nodes of the graph.
|
||
|
G.add_nodes_from(range(n), bipartite=0)
|
||
|
G.add_nodes_from(range(n, n + m), bipartite=1)
|
||
|
# Create an iterable over (u, v, w) triples and for each triple, add an
|
||
|
# edge from u to v with weight w.
|
||
|
triples = ((u, n + v, d) for (u, v, d) in _generate_weighted_edges(A))
|
||
|
# If the entries in the adjacency matrix are integers and the graph is a
|
||
|
# multigraph, then create parallel edges, each with weight 1, for each
|
||
|
# entry in the adjacency matrix. Otherwise, create one edge for each
|
||
|
# positive entry in the adjacency matrix and set the weight of that edge to
|
||
|
# be the entry in the matrix.
|
||
|
if A.dtype.kind in ('i', 'u') and G.is_multigraph():
|
||
|
chain = itertools.chain.from_iterable
|
||
|
triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
|
||
|
G.add_weighted_edges_from(triples, weight=edge_attribute)
|
||
|
return G
|
||
|
|
||
|
|
||
|
# fixture for pytest
|
||
|
def setup_module(module):
|
||
|
import pytest
|
||
|
scipy = pytest.importorskip('scipy')
|