73 lines
1.8 KiB
Python
73 lines
1.8 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
# Copyright (C) 2004-2019 by
|
||
|
# Aric Hagberg <hagberg@lanl.gov>
|
||
|
# Dan Schult <dschult@colgate.edu>
|
||
|
# Pieter Swart <swart@lanl.gov>
|
||
|
# All rights reserved.
|
||
|
# BSD license.
|
||
|
#
|
||
|
# Authors: ysitu (ysitu@users.noreply.github.com)
|
||
|
"""Semiconnectedness."""
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for, pairwise
|
||
|
|
||
|
__all__ = ['is_semiconnected']
|
||
|
|
||
|
|
||
|
@not_implemented_for('undirected')
|
||
|
def is_semiconnected(G, topo_order=None):
|
||
|
"""Returns True if the graph is semiconnected, False otherwise.
|
||
|
|
||
|
A graph is semiconnected if, and only if, for any pair of nodes, either one
|
||
|
is reachable from the other, or they are mutually reachable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX graph
|
||
|
A directed graph.
|
||
|
|
||
|
topo_order: list or tuple, optional
|
||
|
A topological order for G (if None, the function will compute one)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
semiconnected : bool
|
||
|
True if the graph is semiconnected, False otherwise.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NetworkXNotImplemented :
|
||
|
If the input graph is undirected.
|
||
|
|
||
|
NetworkXPointlessConcept :
|
||
|
If the graph is empty.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G=nx.path_graph(4,create_using=nx.DiGraph())
|
||
|
>>> print(nx.is_semiconnected(G))
|
||
|
True
|
||
|
>>> G=nx.DiGraph([(1, 2), (3, 2)])
|
||
|
>>> print(nx.is_semiconnected(G))
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
is_strongly_connected
|
||
|
is_weakly_connected
|
||
|
is_connected
|
||
|
is_biconnected
|
||
|
"""
|
||
|
if len(G) == 0:
|
||
|
raise nx.NetworkXPointlessConcept(
|
||
|
'Connectivity is undefined for the null graph.')
|
||
|
|
||
|
if not nx.is_weakly_connected(G):
|
||
|
return False
|
||
|
|
||
|
G = nx.condensation(G)
|
||
|
if topo_order is None:
|
||
|
topo_order = nx.topological_sort(G)
|
||
|
|
||
|
return all(G.has_edge(u, v) for u, v in pairwise(topo_order))
|