612 lines
21 KiB
Python
612 lines
21 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
# Copyright (C) 2017 NetworkX Developers
|
||
|
# Aric Hagberg <hagberg@lanl.gov>
|
||
|
# Dan Schult <dschult@colgate.edu>
|
||
|
# Pieter Swart <swart@lanl.gov>
|
||
|
# Loïc Séguin-C. <loicseguin@gmail.com>
|
||
|
# All rights reserved.
|
||
|
# BSD license.
|
||
|
"""
|
||
|
Algorithms for calculating min/max spanning trees/forests.
|
||
|
|
||
|
"""
|
||
|
from heapq import heappop, heappush
|
||
|
from operator import itemgetter
|
||
|
from itertools import count
|
||
|
from math import isnan
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.utils import UnionFind, not_implemented_for
|
||
|
|
||
|
__all__ = [
|
||
|
'minimum_spanning_edges', 'maximum_spanning_edges',
|
||
|
'minimum_spanning_tree', 'maximum_spanning_tree',
|
||
|
]
|
||
|
|
||
|
|
||
|
@not_implemented_for('multigraph')
|
||
|
def boruvka_mst_edges(G, minimum=True, weight='weight',
|
||
|
keys=False, data=True, ignore_nan=False):
|
||
|
"""Iterate over edges of a Borůvka's algorithm min/max spanning tree.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX Graph
|
||
|
The edges of `G` must have distinct weights,
|
||
|
otherwise the edges may not form a tree.
|
||
|
|
||
|
minimum : bool (default: True)
|
||
|
Find the minimum (True) or maximum (False) spanning tree.
|
||
|
|
||
|
weight : string (default: 'weight')
|
||
|
The name of the edge attribute holding the edge weights.
|
||
|
|
||
|
keys : bool (default: True)
|
||
|
This argument is ignored since this function is not
|
||
|
implemented for multigraphs; it exists only for consistency
|
||
|
with the other minimum spanning tree functions.
|
||
|
|
||
|
data : bool (default: True)
|
||
|
Flag for whether to yield edge attribute dicts.
|
||
|
If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
|
||
|
If False, yield edges `(u, v)`.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
"""
|
||
|
# Initialize a forest, assuming initially that it is the discrete
|
||
|
# partition of the nodes of the graph.
|
||
|
forest = UnionFind(G)
|
||
|
|
||
|
def best_edge(component):
|
||
|
"""Returns the optimum (minimum or maximum) edge on the edge
|
||
|
boundary of the given set of nodes.
|
||
|
|
||
|
A return value of ``None`` indicates an empty boundary.
|
||
|
|
||
|
"""
|
||
|
sign = 1 if minimum else -1
|
||
|
minwt = float('inf')
|
||
|
boundary = None
|
||
|
for e in nx.edge_boundary(G, component, data=True):
|
||
|
wt = e[-1].get(weight, 1) * sign
|
||
|
if isnan(wt):
|
||
|
if ignore_nan:
|
||
|
continue
|
||
|
msg = "NaN found as an edge weight. Edge %s"
|
||
|
raise ValueError(msg % (e,))
|
||
|
if wt < minwt:
|
||
|
minwt = wt
|
||
|
boundary = e
|
||
|
return boundary
|
||
|
|
||
|
# Determine the optimum edge in the edge boundary of each component
|
||
|
# in the forest.
|
||
|
best_edges = (best_edge(component) for component in forest.to_sets())
|
||
|
best_edges = [edge for edge in best_edges if edge is not None]
|
||
|
# If each entry was ``None``, that means the graph was disconnected,
|
||
|
# so we are done generating the forest.
|
||
|
while best_edges:
|
||
|
# Determine the optimum edge in the edge boundary of each
|
||
|
# component in the forest.
|
||
|
#
|
||
|
# This must be a sequence, not an iterator. In this list, the
|
||
|
# same edge may appear twice, in different orientations (but
|
||
|
# that's okay, since a union operation will be called on the
|
||
|
# endpoints the first time it is seen, but not the second time).
|
||
|
#
|
||
|
# Any ``None`` indicates that the edge boundary for that
|
||
|
# component was empty, so that part of the forest has been
|
||
|
# completed.
|
||
|
#
|
||
|
# TODO This can be parallelized, both in the outer loop over
|
||
|
# each component in the forest and in the computation of the
|
||
|
# minimum. (Same goes for the identical lines outside the loop.)
|
||
|
best_edges = (best_edge(component) for component in forest.to_sets())
|
||
|
best_edges = [edge for edge in best_edges if edge is not None]
|
||
|
# Join trees in the forest using the best edges, and yield that
|
||
|
# edge, since it is part of the spanning tree.
|
||
|
#
|
||
|
# TODO This loop can be parallelized, to an extent (the union
|
||
|
# operation must be atomic).
|
||
|
for u, v, d in best_edges:
|
||
|
if forest[u] != forest[v]:
|
||
|
if data:
|
||
|
yield u, v, d
|
||
|
else:
|
||
|
yield u, v
|
||
|
forest.union(u, v)
|
||
|
|
||
|
|
||
|
def kruskal_mst_edges(G, minimum, weight='weight',
|
||
|
keys=True, data=True, ignore_nan=False):
|
||
|
"""Iterate over edges of a Kruskal's algorithm min/max spanning tree.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX Graph
|
||
|
The graph holding the tree of interest.
|
||
|
|
||
|
minimum : bool (default: True)
|
||
|
Find the minimum (True) or maximum (False) spanning tree.
|
||
|
|
||
|
weight : string (default: 'weight')
|
||
|
The name of the edge attribute holding the edge weights.
|
||
|
|
||
|
keys : bool (default: True)
|
||
|
If `G` is a multigraph, `keys` controls whether edge keys ar yielded.
|
||
|
Otherwise `keys` is ignored.
|
||
|
|
||
|
data : bool (default: True)
|
||
|
Flag for whether to yield edge attribute dicts.
|
||
|
If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
|
||
|
If False, yield edges `(u, v)`.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
"""
|
||
|
subtrees = UnionFind()
|
||
|
if G.is_multigraph():
|
||
|
edges = G.edges(keys=True, data=True)
|
||
|
|
||
|
def filter_nan_edges(edges=edges, weight=weight):
|
||
|
sign = 1 if minimum else -1
|
||
|
for u, v, k, d in edges:
|
||
|
wt = d.get(weight, 1) * sign
|
||
|
if isnan(wt):
|
||
|
if ignore_nan:
|
||
|
continue
|
||
|
msg = "NaN found as an edge weight. Edge %s"
|
||
|
raise ValueError(msg % ((u, v, k, d),))
|
||
|
yield wt, u, v, k, d
|
||
|
else:
|
||
|
edges = G.edges(data=True)
|
||
|
|
||
|
def filter_nan_edges(edges=edges, weight=weight):
|
||
|
sign = 1 if minimum else -1
|
||
|
for u, v, d in edges:
|
||
|
wt = d.get(weight, 1) * sign
|
||
|
if isnan(wt):
|
||
|
if ignore_nan:
|
||
|
continue
|
||
|
msg = "NaN found as an edge weight. Edge %s"
|
||
|
raise ValueError(msg % ((u, v, d),))
|
||
|
yield wt, u, v, d
|
||
|
edges = sorted(filter_nan_edges(), key=itemgetter(0))
|
||
|
# Multigraphs need to handle edge keys in addition to edge data.
|
||
|
if G.is_multigraph():
|
||
|
for wt, u, v, k, d in edges:
|
||
|
if subtrees[u] != subtrees[v]:
|
||
|
if keys:
|
||
|
if data:
|
||
|
yield u, v, k, d
|
||
|
else:
|
||
|
yield u, v, k
|
||
|
else:
|
||
|
if data:
|
||
|
yield u, v, d
|
||
|
else:
|
||
|
yield u, v
|
||
|
subtrees.union(u, v)
|
||
|
else:
|
||
|
for wt, u, v, d in edges:
|
||
|
if subtrees[u] != subtrees[v]:
|
||
|
if data:
|
||
|
yield (u, v, d)
|
||
|
else:
|
||
|
yield (u, v)
|
||
|
subtrees.union(u, v)
|
||
|
|
||
|
|
||
|
def prim_mst_edges(G, minimum, weight='weight',
|
||
|
keys=True, data=True, ignore_nan=False):
|
||
|
"""Iterate over edges of Prim's algorithm min/max spanning tree.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX Graph
|
||
|
The graph holding the tree of interest.
|
||
|
|
||
|
minimum : bool (default: True)
|
||
|
Find the minimum (True) or maximum (False) spanning tree.
|
||
|
|
||
|
weight : string (default: 'weight')
|
||
|
The name of the edge attribute holding the edge weights.
|
||
|
|
||
|
keys : bool (default: True)
|
||
|
If `G` is a multigraph, `keys` controls whether edge keys ar yielded.
|
||
|
Otherwise `keys` is ignored.
|
||
|
|
||
|
data : bool (default: True)
|
||
|
Flag for whether to yield edge attribute dicts.
|
||
|
If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
|
||
|
If False, yield edges `(u, v)`.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
"""
|
||
|
is_multigraph = G.is_multigraph()
|
||
|
push = heappush
|
||
|
pop = heappop
|
||
|
|
||
|
nodes = set(G)
|
||
|
c = count()
|
||
|
|
||
|
sign = 1 if minimum else -1
|
||
|
|
||
|
while nodes:
|
||
|
u = nodes.pop()
|
||
|
frontier = []
|
||
|
visited = {u}
|
||
|
if is_multigraph:
|
||
|
for v, keydict in G.adj[u].items():
|
||
|
for k, d in keydict.items():
|
||
|
wt = d.get(weight, 1) * sign
|
||
|
if isnan(wt):
|
||
|
if ignore_nan:
|
||
|
continue
|
||
|
msg = "NaN found as an edge weight. Edge %s"
|
||
|
raise ValueError(msg % ((u, v, k, d),))
|
||
|
push(frontier, (wt, next(c), u, v, k, d))
|
||
|
else:
|
||
|
for v, d in G.adj[u].items():
|
||
|
wt = d.get(weight, 1) * sign
|
||
|
if isnan(wt):
|
||
|
if ignore_nan:
|
||
|
continue
|
||
|
msg = "NaN found as an edge weight. Edge %s"
|
||
|
raise ValueError(msg % ((u, v, d),))
|
||
|
push(frontier, (wt, next(c), u, v, d))
|
||
|
while frontier:
|
||
|
if is_multigraph:
|
||
|
W, _, u, v, k, d = pop(frontier)
|
||
|
else:
|
||
|
W, _, u, v, d = pop(frontier)
|
||
|
if v in visited or v not in nodes:
|
||
|
continue
|
||
|
# Multigraphs need to handle edge keys in addition to edge data.
|
||
|
if is_multigraph and keys:
|
||
|
if data:
|
||
|
yield u, v, k, d
|
||
|
else:
|
||
|
yield u, v, k
|
||
|
else:
|
||
|
if data:
|
||
|
yield u, v, d
|
||
|
else:
|
||
|
yield u, v
|
||
|
# update frontier
|
||
|
visited.add(v)
|
||
|
nodes.discard(v)
|
||
|
if is_multigraph:
|
||
|
for w, keydict in G.adj[v].items():
|
||
|
if w in visited:
|
||
|
continue
|
||
|
for k2, d2 in keydict.items():
|
||
|
new_weight = d2.get(weight, 1) * sign
|
||
|
push(frontier, (new_weight, next(c), v, w, k2, d2))
|
||
|
else:
|
||
|
for w, d2 in G.adj[v].items():
|
||
|
if w in visited:
|
||
|
continue
|
||
|
new_weight = d2.get(weight, 1) * sign
|
||
|
push(frontier, (new_weight, next(c), v, w, d2))
|
||
|
|
||
|
|
||
|
ALGORITHMS = {
|
||
|
'boruvka': boruvka_mst_edges,
|
||
|
u'borůvka': boruvka_mst_edges,
|
||
|
'kruskal': kruskal_mst_edges,
|
||
|
'prim': prim_mst_edges
|
||
|
}
|
||
|
|
||
|
|
||
|
@not_implemented_for('directed')
|
||
|
def minimum_spanning_edges(G, algorithm='kruskal', weight='weight',
|
||
|
keys=True, data=True, ignore_nan=False):
|
||
|
"""Generate edges in a minimum spanning forest of an undirected
|
||
|
weighted graph.
|
||
|
|
||
|
A minimum spanning tree is a subgraph of the graph (a tree)
|
||
|
with the minimum sum of edge weights. A spanning forest is a
|
||
|
union of the spanning trees for each connected component of the graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : undirected Graph
|
||
|
An undirected graph. If `G` is connected, then the algorithm finds a
|
||
|
spanning tree. Otherwise, a spanning forest is found.
|
||
|
|
||
|
algorithm : string
|
||
|
The algorithm to use when finding a minimum spanning tree. Valid
|
||
|
choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'.
|
||
|
|
||
|
weight : string
|
||
|
Edge data key to use for weight (default 'weight').
|
||
|
|
||
|
keys : bool
|
||
|
Whether to yield edge key in multigraphs in addition to the edge.
|
||
|
If `G` is not a multigraph, this is ignored.
|
||
|
|
||
|
data : bool, optional
|
||
|
If True yield the edge data along with the edge.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
edges : iterator
|
||
|
An iterator over edges in a maximum spanning tree of `G`.
|
||
|
Edges connecting nodes `u` and `v` are represented as tuples:
|
||
|
`(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)`
|
||
|
|
||
|
If `G` is a multigraph, `keys` indicates whether the edge key `k` will
|
||
|
be reported in the third position in the edge tuple. `data` indicates
|
||
|
whether the edge datadict `d` will appear at the end of the edge tuple.
|
||
|
|
||
|
If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True
|
||
|
or `(u, v)` if `data` is False.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from networkx.algorithms import tree
|
||
|
|
||
|
Find minimum spanning edges by Kruskal's algorithm
|
||
|
|
||
|
>>> G = nx.cycle_graph(4)
|
||
|
>>> G.add_edge(0, 3, weight=2)
|
||
|
>>> mst = tree.minimum_spanning_edges(G, algorithm='kruskal', data=False)
|
||
|
>>> edgelist = list(mst)
|
||
|
>>> sorted(sorted(e) for e in edgelist)
|
||
|
[[0, 1], [1, 2], [2, 3]]
|
||
|
|
||
|
Find minimum spanning edges by Prim's algorithm
|
||
|
|
||
|
>>> G = nx.cycle_graph(4)
|
||
|
>>> G.add_edge(0, 3, weight=2)
|
||
|
>>> mst = tree.minimum_spanning_edges(G, algorithm='prim', data=False)
|
||
|
>>> edgelist = list(mst)
|
||
|
>>> sorted(sorted(e) for e in edgelist)
|
||
|
[[0, 1], [1, 2], [2, 3]]
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For Borůvka's algorithm, each edge must have a weight attribute, and
|
||
|
each edge weight must be distinct.
|
||
|
|
||
|
For the other algorithms, if the graph edges do not have a weight
|
||
|
attribute a default weight of 1 will be used.
|
||
|
|
||
|
Modified code from David Eppstein, April 2006
|
||
|
http://www.ics.uci.edu/~eppstein/PADS/
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
algo = ALGORITHMS[algorithm]
|
||
|
except KeyError:
|
||
|
msg = '{} is not a valid choice for an algorithm.'.format(algorithm)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
return algo(G, minimum=True, weight=weight, keys=keys, data=data,
|
||
|
ignore_nan=ignore_nan)
|
||
|
|
||
|
|
||
|
@not_implemented_for('directed')
|
||
|
def maximum_spanning_edges(G, algorithm='kruskal', weight='weight',
|
||
|
keys=True, data=True, ignore_nan=False):
|
||
|
"""Generate edges in a maximum spanning forest of an undirected
|
||
|
weighted graph.
|
||
|
|
||
|
A maximum spanning tree is a subgraph of the graph (a tree)
|
||
|
with the maximum possible sum of edge weights. A spanning forest is a
|
||
|
union of the spanning trees for each connected component of the graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : undirected Graph
|
||
|
An undirected graph. If `G` is connected, then the algorithm finds a
|
||
|
spanning tree. Otherwise, a spanning forest is found.
|
||
|
|
||
|
algorithm : string
|
||
|
The algorithm to use when finding a maximum spanning tree. Valid
|
||
|
choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'.
|
||
|
|
||
|
weight : string
|
||
|
Edge data key to use for weight (default 'weight').
|
||
|
|
||
|
keys : bool
|
||
|
Whether to yield edge key in multigraphs in addition to the edge.
|
||
|
If `G` is not a multigraph, this is ignored.
|
||
|
|
||
|
data : bool, optional
|
||
|
If True yield the edge data along with the edge.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
edges : iterator
|
||
|
An iterator over edges in a maximum spanning tree of `G`.
|
||
|
Edges connecting nodes `u` and `v` are represented as tuples:
|
||
|
`(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)`
|
||
|
|
||
|
If `G` is a multigraph, `keys` indicates whether the edge key `k` will
|
||
|
be reported in the third position in the edge tuple. `data` indicates
|
||
|
whether the edge datadict `d` will appear at the end of the edge tuple.
|
||
|
|
||
|
If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True
|
||
|
or `(u, v)` if `data` is False.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from networkx.algorithms import tree
|
||
|
|
||
|
Find maximum spanning edges by Kruskal's algorithm
|
||
|
|
||
|
>>> G = nx.cycle_graph(4)
|
||
|
>>> G.add_edge(0, 3, weight=2)
|
||
|
>>> mst = tree.maximum_spanning_edges(G, algorithm='kruskal', data=False)
|
||
|
>>> edgelist = list(mst)
|
||
|
>>> sorted(sorted(e) for e in edgelist)
|
||
|
[[0, 1], [0, 3], [1, 2]]
|
||
|
|
||
|
Find maximum spanning edges by Prim's algorithm
|
||
|
|
||
|
>>> G = nx.cycle_graph(4)
|
||
|
>>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3
|
||
|
>>> mst = tree.maximum_spanning_edges(G, algorithm='prim', data=False)
|
||
|
>>> edgelist = list(mst)
|
||
|
>>> sorted(sorted(e) for e in edgelist)
|
||
|
[[0, 1], [0, 3], [2, 3]]
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For Borůvka's algorithm, each edge must have a weight attribute, and
|
||
|
each edge weight must be distinct.
|
||
|
|
||
|
For the other algorithms, if the graph edges do not have a weight
|
||
|
attribute a default weight of 1 will be used.
|
||
|
|
||
|
Modified code from David Eppstein, April 2006
|
||
|
http://www.ics.uci.edu/~eppstein/PADS/
|
||
|
"""
|
||
|
try:
|
||
|
algo = ALGORITHMS[algorithm]
|
||
|
except KeyError:
|
||
|
msg = '{} is not a valid choice for an algorithm.'.format(algorithm)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
return algo(G, minimum=False, weight=weight, keys=keys, data=data,
|
||
|
ignore_nan=ignore_nan)
|
||
|
|
||
|
|
||
|
def minimum_spanning_tree(G, weight='weight', algorithm='kruskal',
|
||
|
ignore_nan=False):
|
||
|
"""Returns a minimum spanning tree or forest on an undirected graph `G`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : undirected graph
|
||
|
An undirected graph. If `G` is connected, then the algorithm finds a
|
||
|
spanning tree. Otherwise, a spanning forest is found.
|
||
|
|
||
|
weight : str
|
||
|
Data key to use for edge weights.
|
||
|
|
||
|
algorithm : string
|
||
|
The algorithm to use when finding a minimum spanning tree. Valid
|
||
|
choices are 'kruskal', 'prim', or 'boruvka'. The default is
|
||
|
'kruskal'.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
G : NetworkX Graph
|
||
|
A minimum spanning tree or forest.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.cycle_graph(4)
|
||
|
>>> G.add_edge(0, 3, weight=2)
|
||
|
>>> T = nx.minimum_spanning_tree(G)
|
||
|
>>> sorted(T.edges(data=True))
|
||
|
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For Borůvka's algorithm, each edge must have a weight attribute, and
|
||
|
each edge weight must be distinct.
|
||
|
|
||
|
For the other algorithms, if the graph edges do not have a weight
|
||
|
attribute a default weight of 1 will be used.
|
||
|
|
||
|
There may be more than one tree with the same minimum or maximum weight.
|
||
|
See :mod:`networkx.tree.recognition` for more detailed definitions.
|
||
|
|
||
|
Isolated nodes with self-loops are in the tree as edgeless isolated nodes.
|
||
|
|
||
|
"""
|
||
|
edges = minimum_spanning_edges(G, algorithm, weight, keys=True,
|
||
|
data=True, ignore_nan=ignore_nan)
|
||
|
T = G.__class__() # Same graph class as G
|
||
|
T.graph.update(G.graph)
|
||
|
T.add_nodes_from(G.nodes.items())
|
||
|
T.add_edges_from(edges)
|
||
|
return T
|
||
|
|
||
|
|
||
|
def maximum_spanning_tree(G, weight='weight', algorithm='kruskal',
|
||
|
ignore_nan=False):
|
||
|
"""Returns a maximum spanning tree or forest on an undirected graph `G`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : undirected graph
|
||
|
An undirected graph. If `G` is connected, then the algorithm finds a
|
||
|
spanning tree. Otherwise, a spanning forest is found.
|
||
|
|
||
|
weight : str
|
||
|
Data key to use for edge weights.
|
||
|
|
||
|
algorithm : string
|
||
|
The algorithm to use when finding a maximum spanning tree. Valid
|
||
|
choices are 'kruskal', 'prim', or 'boruvka'. The default is
|
||
|
'kruskal'.
|
||
|
|
||
|
ignore_nan : bool (default: False)
|
||
|
If a NaN is found as an edge weight normally an exception is raised.
|
||
|
If `ignore_nan is True` then that edge is ignored instead.
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
G : NetworkX Graph
|
||
|
A maximum spanning tree or forest.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.cycle_graph(4)
|
||
|
>>> G.add_edge(0, 3, weight=2)
|
||
|
>>> T = nx.maximum_spanning_tree(G)
|
||
|
>>> sorted(T.edges(data=True))
|
||
|
[(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})]
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For Borůvka's algorithm, each edge must have a weight attribute, and
|
||
|
each edge weight must be distinct.
|
||
|
|
||
|
For the other algorithms, if the graph edges do not have a weight
|
||
|
attribute a default weight of 1 will be used.
|
||
|
|
||
|
There may be more than one tree with the same minimum or maximum weight.
|
||
|
See :mod:`networkx.tree.recognition` for more detailed definitions.
|
||
|
|
||
|
Isolated nodes with self-loops are in the tree as edgeless isolated nodes.
|
||
|
|
||
|
"""
|
||
|
edges = maximum_spanning_edges(G, algorithm, weight, keys=True,
|
||
|
data=True, ignore_nan=ignore_nan)
|
||
|
edges = list(edges)
|
||
|
T = G.__class__() # Same graph class as G
|
||
|
T.graph.update(G.graph)
|
||
|
T.add_nodes_from(G.nodes.items())
|
||
|
T.add_edges_from(edges)
|
||
|
return T
|