66 lines
2.9 KiB
Python
66 lines
2.9 KiB
Python
|
import pytest
|
||
|
numpy = pytest.importorskip('numpy')
|
||
|
npt = pytest.importorskip('numpy.testing')
|
||
|
scipy = pytest.importorskip('scipy')
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.generators.degree_seq import havel_hakimi_graph
|
||
|
|
||
|
|
||
|
class TestModularity(object):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
deg = [3, 2, 2, 1, 0]
|
||
|
cls.G = havel_hakimi_graph(deg)
|
||
|
# Graph used as an example in Sec. 4.1 of Langville and Meyer,
|
||
|
# "Google's PageRank and Beyond". (Used for test_directed_laplacian)
|
||
|
cls.DG = nx.DiGraph()
|
||
|
cls.DG.add_edges_from(((1, 2), (1, 3), (3, 1), (3, 2), (3, 5), (4, 5), (4, 6),
|
||
|
(5, 4), (5, 6), (6, 4)))
|
||
|
|
||
|
def test_modularity(self):
|
||
|
"Modularity matrix"
|
||
|
B = numpy.matrix([[-1.125, 0.25, 0.25, 0.625, 0.],
|
||
|
[0.25, -0.5, 0.5, -0.25, 0.],
|
||
|
[0.25, 0.5, -0.5, -0.25, 0.],
|
||
|
[0.625, -0.25, -0.25, -0.125, 0.],
|
||
|
[0., 0., 0., 0., 0.]])
|
||
|
|
||
|
permutation = [4, 0, 1, 2, 3]
|
||
|
npt.assert_equal(nx.modularity_matrix(self.G), B)
|
||
|
npt.assert_equal(nx.modularity_matrix(self.G, nodelist=permutation),
|
||
|
B[numpy.ix_(permutation, permutation)])
|
||
|
|
||
|
def test_modularity_weight(self):
|
||
|
"Modularity matrix with weights"
|
||
|
B = numpy.matrix([[-1.125, 0.25, 0.25, 0.625, 0.],
|
||
|
[0.25, -0.5, 0.5, -0.25, 0.],
|
||
|
[0.25, 0.5, -0.5, -0.25, 0.],
|
||
|
[0.625, -0.25, -0.25, -0.125, 0.],
|
||
|
[0., 0., 0., 0., 0.]])
|
||
|
|
||
|
G_weighted = self.G.copy()
|
||
|
for n1, n2 in G_weighted.edges():
|
||
|
G_weighted.edges[n1, n2]["weight"] = 0.5
|
||
|
# The following test would fail in networkx 1.1
|
||
|
npt.assert_equal(nx.modularity_matrix(G_weighted), B)
|
||
|
# The following test that the modularity matrix get rescaled accordingly
|
||
|
npt.assert_equal(nx.modularity_matrix(G_weighted, weight="weight"), 0.5 * B)
|
||
|
|
||
|
def test_directed_modularity(self):
|
||
|
"Directed Modularity matrix"
|
||
|
B = numpy.matrix([[-0.2, 0.6, 0.8, -0.4, -0.4, -0.4],
|
||
|
[0., 0., 0., 0., 0., 0.],
|
||
|
[0.7, 0.4, -0.3, -0.6, 0.4, -0.6],
|
||
|
[-0.2, -0.4, -0.2, -0.4, 0.6, 0.6],
|
||
|
[-0.2, -0.4, -0.2, 0.6, -0.4, 0.6],
|
||
|
[-0.1, -0.2, -0.1, 0.8, -0.2, -0.2]])
|
||
|
node_permutation = [5, 1, 2, 3, 4, 6]
|
||
|
idx_permutation = [4, 0, 1, 2, 3, 5]
|
||
|
mm = nx.directed_modularity_matrix(self.DG, nodelist=sorted(self.DG))
|
||
|
npt.assert_equal(mm, B)
|
||
|
npt.assert_equal(nx.directed_modularity_matrix(self.DG,
|
||
|
nodelist=node_permutation),
|
||
|
B[numpy.ix_(idx_permutation, idx_permutation)])
|