382 lines
11 KiB
Python
382 lines
11 KiB
Python
|
#!/usr/bin/env python3
|
||
|
'''
|
||
|
Copyright (C) 2015 Paco Garcia, www.arakne.es
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
'''
|
||
|
import os, sys, tempfile, math, inkex
|
||
|
from lxml import etree
|
||
|
|
||
|
def info(s, newLine="\n"):
|
||
|
sys.stderr.write(s)
|
||
|
#sys.stderr.write(s.encode("UTF-8"))
|
||
|
sys.stderr.write(newLine)
|
||
|
|
||
|
def tern(condition,val1,val2):
|
||
|
return val1 if condition else val2
|
||
|
|
||
|
def _rads(n):
|
||
|
return math.radians(n)
|
||
|
|
||
|
def pow2(n):
|
||
|
return math.pow(n, 2)
|
||
|
|
||
|
# calcula la hipotenusa dados los catetos
|
||
|
def triHipo(catA, catB):
|
||
|
return math.sqrt(pow2(catA) + pow2(catB))
|
||
|
|
||
|
# calcula el cateto dada la hipotenusa y el otro cateto
|
||
|
def triCat(Hipo, catA):
|
||
|
return math.sqrt(pow2(Hipo) - pow2(catA))
|
||
|
|
||
|
class XY:
|
||
|
"""A class for work with 2d points"""
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self.co=[0.0,0.0]
|
||
|
lArgs=len(args)
|
||
|
if lArgs>0:
|
||
|
if lArgs==1:
|
||
|
if type(args[0])==XY:
|
||
|
self.co=args[0].co
|
||
|
else:
|
||
|
self.co=[args[0],args[0]]
|
||
|
if lArgs>1:
|
||
|
self.co=[args[0],args[1]]
|
||
|
def __add__(self,xy):
|
||
|
self.co = [self.co[0] + xy.co[0],self.co[1] + xy.co[1]]
|
||
|
return self
|
||
|
def __sub__(self,xy):
|
||
|
self.co=[self.co[0] - xy.co[0], self.co[1] - xy.co[1]]
|
||
|
return self
|
||
|
def __eq__(self, xy):
|
||
|
return (self.co[0] == xy.x and self.co[1] == xy.y)
|
||
|
|
||
|
def sub(self,xy):
|
||
|
self.__sub__(xy)
|
||
|
return self
|
||
|
def mul(self,xy):
|
||
|
if type(xy)==XY:
|
||
|
co=[self.co[0] * xy.co[0],self.co[1] * xy.co[1]]
|
||
|
else:
|
||
|
co=[self.co[0] * xy,self.co[1] * xy]
|
||
|
self.co = co
|
||
|
return self
|
||
|
|
||
|
def div(self,xy):
|
||
|
if type(xy)==XY:
|
||
|
co=[self.co[0] / xy.co[0], self.co[1] / xy.co[1]]
|
||
|
else:
|
||
|
co=[self.co[0] / xy, self.co[1] / xy]
|
||
|
self.co = co
|
||
|
return self
|
||
|
|
||
|
def vlength(self):
|
||
|
#return math.sqrt((self.co[0]*self.co[0])+(self.co[1]*self.co[1]))
|
||
|
return triHipo(self.co[0], self.co[1])
|
||
|
|
||
|
def rot(self,ang):
|
||
|
x,y,sa,ca= (self.co[0], self.co[1], math.sin(ang), math.cos(ang))
|
||
|
self.co=[ca * x - sa * y, sa * x + ca * y]
|
||
|
return self
|
||
|
|
||
|
def Rot(self,p,r):
|
||
|
self.co=[math.cos(r)*p, math.sin(r)*p]
|
||
|
return self
|
||
|
|
||
|
def rotate(self,rot,cX=0.0,cY=0.0):
|
||
|
cosRot = math.cos(rot)
|
||
|
px = cX + (self.x-cX) * cosRot - (self.y-cY) * math.sin(rot)
|
||
|
py = cY + (self.x-cX) * math.sin(rot) + (self.y-cY) * cosRot
|
||
|
self.co = [px,py]
|
||
|
return self
|
||
|
|
||
|
def rotateD(self,rot,cX=0.0,cY=0.0):
|
||
|
self.rotate(_rads(rot),cX,cY)
|
||
|
return self
|
||
|
|
||
|
def VDist(self,V2):
|
||
|
tmp = XY(self.co[0],self.co[1])
|
||
|
tmp = tmp.sub(V2)
|
||
|
return tmp.vlength()
|
||
|
|
||
|
def st(self):
|
||
|
return str(self.co[0])+','+str(self.co[1])
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
return self.co[0]
|
||
|
|
||
|
@property
|
||
|
def sx(self):
|
||
|
return str(self.co[0])
|
||
|
|
||
|
@property
|
||
|
def y(self):
|
||
|
return self.co[1]
|
||
|
|
||
|
@property
|
||
|
def sy(self):
|
||
|
return str(self.co[1])
|
||
|
|
||
|
def hipo(self,xy):
|
||
|
#return math.sqrt(math.pow(self.x-xy.x,2) + math.pow(self.y-xy.y,2) )
|
||
|
return triHipo(self.x-xy.x, self.y-xy.y)
|
||
|
def angBetween2Lines(self,p1,p2): # pC punto comun
|
||
|
return math.atan2(self.y - p1.y, self.x - p1.x) - math.atan2(self.y - p2.y, self.x - p2.x)
|
||
|
def getAngle(self,b):
|
||
|
return math.atan2(b.y - self.y, b.x - self.x)
|
||
|
def getAngleD(self,b):
|
||
|
return math.degrees(math.atan2(b.y - self.y, b.x - self.x))
|
||
|
# translada un punto hacia otro
|
||
|
def atPercent(self, p2, percent):
|
||
|
self.co = [(p2.x - self.x) * percent + self.x,(p2.y-self.y) * percent + self.y]
|
||
|
return self
|
||
|
|
||
|
def atMid(self, p2):
|
||
|
return self.atPercent(p2,0.5)
|
||
|
|
||
|
# ________________________________________________________________
|
||
|
# ________________________________________________________________
|
||
|
# ________________________________________________________________
|
||
|
class bezpnt(object):
|
||
|
def __init__(self,pfixed=None,pprev=None,pnext=None):
|
||
|
if isinstance(pfixed, list):
|
||
|
self.fixed = XY(pfixed[0],pfixed[1])
|
||
|
else:
|
||
|
self.fixed = pfixed
|
||
|
if isinstance(pprev, list):
|
||
|
self.prev = XY(pprev[0],pprev[1])
|
||
|
else:
|
||
|
self.prev = pprev
|
||
|
if isinstance(pnext, list):
|
||
|
self.next = XY(pnext[0],pnext[1])
|
||
|
else:
|
||
|
self.next = pnext
|
||
|
return
|
||
|
|
||
|
def translate(self,x,y):
|
||
|
self.fixed + XY(x,y)
|
||
|
if self.prev!=None:self.prev + XY(x,y)
|
||
|
if self.next!=None:self.next + XY(x,y)
|
||
|
return self
|
||
|
|
||
|
def scale(self,x=1.0,y=1.0):
|
||
|
self.fixed.scale(x,y)
|
||
|
if self.prev!=None:self.prev.scale(x,y)
|
||
|
if self.next!=None:self.next.scale(x,y)
|
||
|
return self
|
||
|
|
||
|
def rotate(self,rot,cX=0.0,cY=0.0):
|
||
|
self.fixed.rotate(rot,cX,cY)
|
||
|
if self.prev!=None:self.prev.rotate(rot,cX,cY)
|
||
|
if self.next!=None:self.next.rotate(rot,cX,cY)
|
||
|
return sel
|
||
|
|
||
|
def skew(self,rotx,roty,cX=0.0,cY=0.0):
|
||
|
self.fixed.skew(rotx,roty,cX,cY)
|
||
|
if self.prev!=None:self.prev.skew(rotx,roty,cX,cY)
|
||
|
if self.next!=None:self.next.skew(rotx,roty,cX,cY)
|
||
|
return self
|
||
|
def copy(self,bez2):
|
||
|
try:
|
||
|
self.fixed=XY().copy(bez2.fixed)
|
||
|
self.prev = None if bez2.prev == None else XY().copy(bez2.prev)
|
||
|
self.next = None if bez2.next == None else XY().copy(bez2.next)
|
||
|
except Exception:
|
||
|
gimp.message(str(Exception))
|
||
|
return self
|
||
|
def arrXY(self):
|
||
|
pts=[]
|
||
|
if self.prev == None:
|
||
|
pts+=self.fixed.arrXY(1)
|
||
|
else:
|
||
|
pts+=self.prev.arrXY(1)
|
||
|
pts+=self.fixed.arrXY(1)
|
||
|
if self.next==None:
|
||
|
pts+=self.fixed.arrXY(1)
|
||
|
else:
|
||
|
pts+=self.next.arrXY(1)
|
||
|
return pts
|
||
|
def Prev(self):
|
||
|
p = self.prev
|
||
|
if p==None: p=self.fixed
|
||
|
return p
|
||
|
def Next(self):
|
||
|
p = self.next
|
||
|
if p==None: p=self.fixed
|
||
|
return p
|
||
|
def Fixed(self):
|
||
|
return self.fixed
|
||
|
def flip(self):
|
||
|
p=self.prev
|
||
|
n=self.next
|
||
|
self.prev=n
|
||
|
self.next=p
|
||
|
|
||
|
def createSmallArcBez(r, a1, a2,rot):
|
||
|
a = (a2 - a1) * 0.5
|
||
|
p4 = XY(r * math.cos(a), r * math.sin(a))
|
||
|
p1 = XY(p4.x, -p4.y)
|
||
|
k = 0.5522847498
|
||
|
f = k * math.tan(a)
|
||
|
p2 = XY(p1.x + f * p4.y, p1.y + f * p4.x)
|
||
|
p3 = XY(p2.x,-p2.y)
|
||
|
ar = a + a1
|
||
|
P1 = XY(r * math.cos(a1), r * math.sin(a1)).rotate(rot)
|
||
|
P2 = XY(p2.x, p2.y).rotate(ar).rotate(rot)
|
||
|
P3 = XY(p3.x, p3.y).rotate(ar).rotate(rot)
|
||
|
P4 = XY(r * math.cos(a2),r * math.sin(a2)).rotate(rot)
|
||
|
B1=bezpnt(P1,None,P2)
|
||
|
B2=bezpnt(P4,P3)
|
||
|
return [B1,B2]
|
||
|
|
||
|
def createArcBez(rad, sAng, eAng):
|
||
|
EPSILON = 0.0000000001
|
||
|
bezs =[]
|
||
|
if eAng < sAng:
|
||
|
eAng += 360.0
|
||
|
sAng = _rads(sAng)
|
||
|
eAng = _rads(eAng)
|
||
|
rot = sAng
|
||
|
sAng = _rads(0)
|
||
|
eAng = eAng - rot
|
||
|
pi2 = math.pi * 2
|
||
|
sAng, eAng = (sAng % pi2, eAng % pi2)
|
||
|
pi_2 = math.pi * 0.5
|
||
|
sign = 1 if (sAng < eAng) else -1
|
||
|
a1 = sAng
|
||
|
totAng = min(math.pi * 2, abs(eAng - sAng))
|
||
|
while (totAng > EPSILON):
|
||
|
a2 = a1 + sign * min(totAng, pi_2)
|
||
|
bezs.extend(createSmallArcBez(rad, a1, a2,rot))
|
||
|
totAng = totAng - abs(a2 - a1)
|
||
|
a1 = a2
|
||
|
return bezs
|
||
|
|
||
|
def bezs2XYList(arc1, transform = None):
|
||
|
pnts=[]
|
||
|
bezs=[]
|
||
|
for aa in arc1:
|
||
|
if aa.prev is not None:
|
||
|
bezs.append(XY(aa.prev))
|
||
|
bezs.append(XY(aa.fixed))
|
||
|
|
||
|
if aa.next is not None:
|
||
|
bezs.append(XY(aa.next))
|
||
|
|
||
|
for i in range(len(bezs)):
|
||
|
v = bezs[i]
|
||
|
if transform:
|
||
|
v = v + transform
|
||
|
if i == 0:
|
||
|
pnts.append(v)
|
||
|
else:
|
||
|
v2=pnts[-1]
|
||
|
if (v2.x != v.x or v2.y != v.y):
|
||
|
pnts.append(XY(v))
|
||
|
a=len(pnts)
|
||
|
return pnts
|
||
|
|
||
|
def XYList(lst, rot = 0.0, add = None):
|
||
|
verts=[]
|
||
|
for nn in range(len(lst)):
|
||
|
v = lst[nn]
|
||
|
if rot != 0.0: v = v.rotate(rot)
|
||
|
if add: v = v + add
|
||
|
verts.append([v.x,v.y])
|
||
|
return verts
|
||
|
|
||
|
def XYListSt(lst, rot = 0.0, add = None):
|
||
|
D2 = ""
|
||
|
for nn in range(len(lst)):
|
||
|
v = lst[nn]
|
||
|
if rot != 0.0: v = v.rotate(rot)
|
||
|
if add: v = v + add
|
||
|
D2 += "%s%s " % (tern(nn==1,"C",""), v.st())
|
||
|
return D2
|
||
|
|
||
|
# circle by quadrants, A: 0>90, B: 90>180, C: 180>270, D: 270>360
|
||
|
def circQ(p,r,abcd="ABCD",inverse=0,xtra=None):
|
||
|
aa = r * 0.551915024494
|
||
|
parts={
|
||
|
'A':[XY(0,-r),XY(aa,-r), XY(r, -aa),XY(r,0)],
|
||
|
'B':[XY(r,0), XY(r, aa), XY(aa, r),XY(0,r)],
|
||
|
'C':[XY(0,r), XY(-aa,r), XY(-r, aa),XY(-r,0)],
|
||
|
'D':[XY(-r,0),XY(-r,-aa),XY(-aa,-r),XY(0,-r)]}
|
||
|
pA = [XY(p)+N for N in parts[abcd[0]]]
|
||
|
for aa in abcd[1:]:
|
||
|
pA = pA + [XY(p)+N for N in parts[aa][1:]]
|
||
|
if inverse==1: pA.reverse()
|
||
|
listA = XYList(pA)
|
||
|
if xtra:
|
||
|
for n in xtra:
|
||
|
listA[n].extend(xtra[n])
|
||
|
return listA
|
||
|
|
||
|
def circleInCircle(c1,r1,c2,r2):
|
||
|
return tern((r1 > (c1.hipo(c2) + r2)),True,False)
|
||
|
|
||
|
def polar2cartesian(cX, cY, rad, ang):
|
||
|
return XY(cX + (rad * math.cos(ang)), cY + (rad * math.sin(ang)))
|
||
|
|
||
|
def setArc(x, y, rad, ang1, ang2, first):
|
||
|
start = polar2cartesian(x, y, rad, ang2)
|
||
|
end = polar2cartesian(x, y, rad, ang1)
|
||
|
arcSweep = "0" if (ang2 - ang1 <= 180) else "1"
|
||
|
d = " A%f,%f 0 %s 0 %s" % (rad, rad, arcSweep, end.st())
|
||
|
if first == 1:
|
||
|
d = "M" + start.st() + " " + d
|
||
|
return d
|
||
|
|
||
|
def setArcs(x, y, rad, ang1, ang2, first):
|
||
|
if ang2 < ang1:
|
||
|
m = setArc(x, y, rad, 0, _rads(ang2), first)
|
||
|
m = m +" "+ setArc(x, y, rad, _rads(ang1), _rads(360), 0)
|
||
|
else:
|
||
|
m = setArc(x, y, rad, _rads(ang1), _rads(ang2), first)
|
||
|
return m
|
||
|
|
||
|
def addChild(padre, type, props):
|
||
|
hijo = etree.SubElement(padre, inkex.addNS(type,'svg'))
|
||
|
for n in props:
|
||
|
hijo.set(n,props[n])
|
||
|
return hijo
|
||
|
|
||
|
def svgCircle(padre, r, cx, cy):
|
||
|
return addChild(padre,'circle' ,{'r':str(r), 'cx': str(cx), 'cy': str(cy)})
|
||
|
|
||
|
def circleInscribedInTri(p1,p2,p3):
|
||
|
d1, d2, d3 = [n.vlength() for n in [XY(p3)-p2, XY(p1)-p3, XY(p2)-p1]]
|
||
|
p = d1 + d2 + d3
|
||
|
centro = XY( (p1.x*d1 + p2.x*d2 + p3.x*d3) / p, (p1.y*d1 + p2.y*d2 + p3.y*d3) / p)
|
||
|
p = p / 2.0
|
||
|
radius = math.sqrt(p * (p - d1) * (p - d2) * (p - d3))/p
|
||
|
return (radius, centro.x, centro.y)
|
||
|
|
||
|
def TriInscribedInCircle(p1,p2,p3):
|
||
|
x12, x13, x31, x21 = (p1.x - p2.x, p1.x - p3.x, p3.x - p1.x, p2.x - p1.x)
|
||
|
y12, y13, y31, y21 = (p1.y - p2.y, p1.y - p3.y, p3.y - p1.y, p2.y - p1.y)
|
||
|
sx13 = pow2(p1.x) - pow2(p3.x)
|
||
|
sy13 = pow2(p1.y) - pow2(p3.y)
|
||
|
sx21 = pow2(p2.x) - pow2(p1.x)
|
||
|
sy21 = pow2(p2.y) - pow2(p1.y)
|
||
|
f = (sx13*x12 + sy13*x12 + sx21*x13 + sy21*x13) / (2 * (y31*x12 - y21*x13))
|
||
|
g = (sx13*y12 + sy13*y12 + sx21*y13 + sy21*y13) / (2 * (x31*y12 - x21*y13))
|
||
|
c = - pow2(p1.x) - pow2(p1.y) - 2*g*p1.x - 2*f*p1.y
|
||
|
r = math.sqrt(pow2(-g) + pow2(-f) - c)
|
||
|
return (r, -g, -f)
|
||
|
|
||
|
# 243
|