This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.

103 lines
2.6 KiB
Python
Raw Normal View History

2020-07-30 01:16:18 +02:00
# -*- coding: utf-8 -*-
#
# Author: Yuto Yamaguchi <yuto.ymgc@gmail.com>
def _propagate(P, F, B):
"""Propagate labels by one step
Parameters
----------
P : scipy sparse matrix, shape = [n_samples, n_samples]
Propagation matrix
F : numpy array, shape = [n_samples, n_classes]
Label matrix
B : numpy array, shape = [n_samples, n_classes]
Base matrix
Returns
----------
F_new : array, shape = [n_samples, n_classes]
Label matrix
"""
F_new = P.dot(F) + B
return F_new
def _get_label_info(G, label_name):
"""Get and return information of labels from the input graph
Parameters
----------
G : Network X graph
label_name : string
Name of the target label
Returns
----------
labels : numpy array, shape = [n_labeled_samples, 2]
Array of pairs of labeled node ID and label ID
label_dict : numpy array, shape = [n_classes]
Array of labels
i-th element contains the label corresponding label ID `i`
"""
import numpy as np
labels = []
label_to_id = {}
lid = 0
for i, n in enumerate(G.nodes(data=True)):
if label_name in n[1]:
label = n[1][label_name]
if label not in label_to_id:
label_to_id[label] = lid
lid += 1
labels.append([i, label_to_id[label]])
labels = np.array(labels)
label_dict = np.array([label for label, _ in sorted(
label_to_id.items(), key=lambda x:x[1])])
return (labels, label_dict)
def _init_label_matrix(n_samples, n_classes):
"""Create and return zero matrix
Parameters
----------
n_samples : integer
The number of nodes (samples) on the input graph
n_classes : integer
The number of classes (distinct labels) on the input graph
Returns
----------
F : numpy array, shape = [n_samples, n_classes]
Label matrix
"""
import numpy as np
F = np.zeros((n_samples, n_classes))
return F
def _predict(F, label_dict):
"""Predict labels by learnt label matrix
Parameters
----------
F : numpy array, shape = [n_samples, n_classes]
Learnt (resulting) label matrix
label_dict : numpy array, shape = [n_classes]
Array of labels
i-th element contains the label corresponding label ID `i`
Returns
----------
predicted : numpy array, shape = [n_samples]
Array of predicted labels
"""
import numpy as np
predicted_label_ids = np.argmax(F, axis=1)
predicted = label_dict[predicted_label_ids].tolist()
return predicted