2020-07-30 01:16:18 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# Copyright (c) 2012 Stuart Pernsteiner
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# Redistribution and use in source and binary forms, with or without
|
|
|
|
# modification, are permitted provided that the following conditions are met:
|
|
|
|
#
|
|
|
|
# 1. Redistributions of source code must retain the above copyright notice,
|
|
|
|
# this list of conditions and the following disclaimer.
|
|
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
|
|
# and/or other materials provided with the distribution.
|
|
|
|
#
|
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
|
|
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
|
|
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
|
|
# EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
|
|
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
|
|
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
|
|
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
|
|
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import inkex
|
|
|
|
from inkex.paths import Path
|
|
|
|
import gettext
|
|
|
|
_ = gettext.gettext
|
|
|
|
from copy import deepcopy
|
|
|
|
import math
|
|
|
|
from math import sqrt
|
|
|
|
|
|
|
|
class EllipseSolveEffect(inkex.Effect):
|
|
|
|
def __init__(self):
|
|
|
|
inkex.Effect.__init__(self)
|
|
|
|
|
|
|
|
def effect(self):
|
|
|
|
if len(self.svg.selected) == 0:
|
|
|
|
sys.exit(_("Error: You must select at least one path"))
|
|
|
|
|
|
|
|
for pathId in self.svg.selected:
|
|
|
|
path = self.svg.selected[pathId]
|
|
|
|
pathdata = Path(path.get('d')).to_arrays()
|
|
|
|
if len(pathdata) < 5:
|
|
|
|
sys.exit(_("Error: The selected path has %d points, " +
|
|
|
|
"but 5 are needed.") % len(pathdata))
|
|
|
|
|
|
|
|
points = []
|
|
|
|
for i in range(5):
|
|
|
|
# pathdata[i] is the i'th segment of the path
|
|
|
|
# pathdata[i][1] is the list of coordinates for the segment
|
|
|
|
# pathdata[i][1][-2] is the x-coordinate of the last x,y pair
|
|
|
|
# in the segment definition
|
|
|
|
segpoints = pathdata[i][1]
|
|
|
|
x = segpoints[-2]
|
|
|
|
y = segpoints[-1]
|
|
|
|
points.append((x,y))
|
|
|
|
|
|
|
|
conic = solve_conic(points)
|
|
|
|
[a,b,c,d,e,f] = conic
|
|
|
|
|
|
|
|
if bareiss_determinant([[a,b/2,d/2],[b/2,c,e/2],[d/2,e/2,f]]) == 0 or a*c - b*b/4 <= 0:
|
|
|
|
sys.exit(_("Error: Could not find an ellipse that passes " +
|
|
|
|
"through the provided points"))
|
|
|
|
|
|
|
|
center = ellipse_center(conic)
|
|
|
|
[ad1, ad2] = ellipse_axes(conic)
|
|
|
|
al1 = ellipse_axislen(conic, center, ad1)
|
|
|
|
al2 = ellipse_axislen(conic, center, ad2)
|
|
|
|
|
|
|
|
# Create an <svg:ellipse> object with the appropriate cx,cy and
|
|
|
|
# with the major axis in the x direction. Then add a transform to
|
|
|
|
# rotate it to the correct angle.
|
|
|
|
|
|
|
|
if al1 > al2:
|
|
|
|
major_dir = ad1
|
|
|
|
major_len = al1
|
|
|
|
minor_len = al2
|
|
|
|
else:
|
|
|
|
major_dir = ad2
|
|
|
|
major_len = al2
|
|
|
|
minor_len = al1
|
|
|
|
|
|
|
|
# add sodipodi magic to turn the path into an ellipse
|
|
|
|
def sodi(x):
|
|
|
|
return inkex.addNS(x, 'sodipodi')
|
|
|
|
path.set(sodi('cx'), str(center[0]))
|
|
|
|
path.set(sodi('cy'), str(center[1]))
|
|
|
|
path.set(sodi('rx'), str(major_len))
|
|
|
|
path.set(sodi('ry'), str(minor_len))
|
|
|
|
path.set(sodi('type'), 'arc')
|
|
|
|
|
|
|
|
#inkex.utils.debug(str(center[0]))
|
|
|
|
#inkex.utils.debug(str(center[1]))
|
|
|
|
|
|
|
|
angle = math.atan2(major_dir[1], major_dir[0])
|
|
|
|
if angle > math.pi / 2:
|
|
|
|
angle -= math.pi
|
|
|
|
if angle < -math.pi / 2:
|
|
|
|
angle += math.pi
|
|
|
|
path.apply_transform()
|
|
|
|
path.set('transform', 'rotate(%f %f %f)' % (angle * 180 / math.pi, center[0], center[1]))
|
|
|
|
# NASTY BUGFIX: We do apply_transform and path.set twice because otherwise the ellipse will not be rendered correctly. Reason unknown!
|
|
|
|
path.apply_transform()
|
|
|
|
path.set('transform', 'rotate(%f %f %f)' % (angle * 180 / math.pi, center[0], center[1]))
|
|
|
|
|
|
|
|
def solve_conic(pts):
|
|
|
|
# Find the equation of the conic section passing through the five given
|
|
|
|
# points.
|
|
|
|
#
|
|
|
|
# This technique is from
|
|
|
|
# http://math.fullerton.edu/mathews/n2003/conicfit/ConicFitMod/Links/ConicFitMod_lnk_9.html
|
|
|
|
# (retrieved 31 Jan 2012)
|
|
|
|
rowmajor_matrix = []
|
|
|
|
for i in range(5):
|
|
|
|
(x,y) = pts[i]
|
|
|
|
row = [x*x, x*y, y*y, x, y, 1]
|
|
|
|
rowmajor_matrix.append(row)
|
|
|
|
|
|
|
|
full_matrix = []
|
|
|
|
for i in range(6):
|
|
|
|
col = []
|
|
|
|
for j in range(5):
|
|
|
|
col.append(rowmajor_matrix[j][i])
|
|
|
|
full_matrix.append(col);
|
|
|
|
|
|
|
|
coeffs = []
|
|
|
|
sign = 1
|
|
|
|
for i in range(6):
|
|
|
|
mat = []
|
|
|
|
for j in range(6):
|
|
|
|
if j == i:
|
|
|
|
continue
|
|
|
|
mat.append(full_matrix[j])
|
|
|
|
coeffs.append(bareiss_determinant(mat) * sign)
|
|
|
|
sign = -sign
|
|
|
|
return coeffs
|
|
|
|
|
|
|
|
def bareiss_determinant(mat_orig):
|
|
|
|
# Compute the determinant of the matrix using Bareiss's algorithm. It
|
|
|
|
# doesn't matter whether 'mat' is in row-major or column-major layout,
|
|
|
|
# because det(A) = det(A^T)
|
|
|
|
|
|
|
|
# Algorithm from:
|
|
|
|
# Yap, Chee, "Linear Systems", Fundamental Problems of Algorithmic Algebra
|
|
|
|
# Lecture X, Section 2
|
|
|
|
# http://cs.nyu.edu/~yap/book/alge/ftpSite/l10.ps.gz
|
|
|
|
|
|
|
|
mat = deepcopy(mat_orig);
|
|
|
|
|
|
|
|
size = len(mat)
|
|
|
|
last_akk = 1
|
|
|
|
for k in range(size-1):
|
|
|
|
if last_akk == 0:
|
|
|
|
return 0
|
|
|
|
for i in range(k+1, size):
|
|
|
|
for j in range(k+1, size):
|
|
|
|
mat[i][j] = (mat[i][j] * mat[k][k] - mat[i][k] * mat[k][j]) / last_akk
|
|
|
|
last_akk = mat[k][k]
|
|
|
|
return mat[size-1][size-1]
|
|
|
|
|
|
|
|
def ellipse_center(conic):
|
|
|
|
# From
|
|
|
|
# http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections#Center
|
|
|
|
[a,b,c,d,e,f] = conic
|
|
|
|
x = (b*e - 2*c*d) / (4*a*c - b*b);
|
|
|
|
y = (d*b - 2*a*e) / (4*a*c - b*b);
|
|
|
|
return (x,y)
|
|
|
|
|
|
|
|
def ellipse_axes(conic):
|
|
|
|
# Compute the axis directions of the ellipse.
|
|
|
|
# This technique is from
|
|
|
|
# http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections#Axes
|
|
|
|
[a,b,c,d,e,f] = conic
|
|
|
|
|
|
|
|
# Compute the eigenvalues of
|
|
|
|
# / a b/2 \
|
|
|
|
# \ b/2 c /
|
|
|
|
# This algorithm is from
|
|
|
|
# http://www.math.harvard.edu/archive/21b_fall_04/exhibits/2dmatrices/index.html
|
|
|
|
# (retrieved 31 Jan 2012)
|
|
|
|
ma = a
|
|
|
|
mb = b/2
|
|
|
|
mc = b/2
|
|
|
|
md = c
|
|
|
|
mdet = ma*md - mb*mc
|
|
|
|
mtrace = ma + md
|
|
|
|
|
|
|
|
(l1,l2) = solve_quadratic(1, -mtrace, mdet);
|
|
|
|
|
|
|
|
# Eigenvalues (\lambda_1, \lambda_2)
|
|
|
|
#l1 = mtrace / 2 + sqrt(mtrace*mtrace/4 - mdet)
|
|
|
|
#l2 = mtrace / 2 - sqrt(mtrace*mtrace/4 - mdet)
|
|
|
|
|
|
|
|
if mb == 0:
|
|
|
|
return [(0,1), (1,0)]
|
|
|
|
else:
|
|
|
|
return [(mb, l1-ma), (mb, l2-ma)]
|
|
|
|
|
|
|
|
def ellipse_axislen(conic, center, direction):
|
|
|
|
# Compute the axis length as a multiple of the magnitude of 'direction'
|
|
|
|
[a,b,c,d,e,f] = conic
|
|
|
|
(cx,cy) = center
|
|
|
|
(dx,dy) = direction
|
|
|
|
|
|
|
|
dlen = sqrt(dx*dx + dy*dy)
|
|
|
|
dx /= dlen
|
|
|
|
dy /= dlen
|
|
|
|
|
|
|
|
# Solve for t:
|
|
|
|
# a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0
|
|
|
|
# x = cx + t * dx
|
|
|
|
# y = cy + t * dy
|
|
|
|
# by substituting, we get qa*t^2 + qb*t + qc = 0, where:
|
|
|
|
qa = a*dx*dx + b*dx*dy + c*dy*dy
|
|
|
|
qb = a*2*cx*dx + b*(cx*dy + cy*dx) + c*2*cy*dy + d*dx + e*dy
|
|
|
|
qc = a*cx*cx + b*cx*cy + c*cy*cy + d*cx + e*cy + f
|
|
|
|
|
|
|
|
(t1,t2) = solve_quadratic(qa,qb,qc)
|
|
|
|
|
|
|
|
return max(t1,t2)
|
|
|
|
|
|
|
|
def solve_quadratic(a,b,c):
|
|
|
|
disc = b*b - 4*a*c
|
|
|
|
disc_root = sqrt(b*b - 4*a*c)
|
|
|
|
x1 = (-b + disc_root) / (2*a)
|
|
|
|
x2 = (-b - disc_root) / (2*a)
|
|
|
|
return (x1,x2)
|
|
|
|
|
2020-08-31 21:25:41 +02:00
|
|
|
if __name__ == '__main__':
|
|
|
|
EllipseSolveEffect().run()
|