67 lines
2.1 KiB
Python
67 lines
2.1 KiB
Python
|
# test_efficiency.py - unit tests for the efficiency module
|
||
|
#
|
||
|
# Copyright 2015-2019 NetworkX developers.
|
||
|
#
|
||
|
# This file is part of NetworkX.
|
||
|
#
|
||
|
# NetworkX is distributed under a BSD license; see LICENSE.txt for more
|
||
|
# information.
|
||
|
"""Unit tests for the :mod:`networkx.algorithms.efficiency` module."""
|
||
|
|
||
|
import networkx as nx
|
||
|
|
||
|
|
||
|
class TestEfficiency:
|
||
|
def setup_method(self):
|
||
|
# G1 is a disconnected graph
|
||
|
self.G1 = nx.Graph()
|
||
|
self.G1.add_nodes_from([1, 2, 3])
|
||
|
# G2 is a cycle graph
|
||
|
self.G2 = nx.cycle_graph(4)
|
||
|
# G3 is the triangle graph with one additional edge
|
||
|
self.G3 = nx.lollipop_graph(3, 1)
|
||
|
|
||
|
def test_efficiency_disconnected_nodes(self):
|
||
|
"""
|
||
|
When nodes are disconnected, efficiency is 0
|
||
|
"""
|
||
|
assert nx.efficiency(self.G1, 1, 2) == 0
|
||
|
|
||
|
def test_local_efficiency_disconnected_graph(self):
|
||
|
"""
|
||
|
In a disconnected graph the efficiency is 0
|
||
|
"""
|
||
|
assert nx.local_efficiency(self.G1) == 0
|
||
|
|
||
|
def test_efficiency(self):
|
||
|
assert nx.efficiency(self.G2, 0, 1) == 1
|
||
|
assert nx.efficiency(self.G2, 0, 2) == 1 / 2
|
||
|
|
||
|
def test_global_efficiency(self):
|
||
|
assert nx.global_efficiency(self.G2) == 5 / 6
|
||
|
|
||
|
def test_global_efficiency_complete_graph(self):
|
||
|
"""
|
||
|
Tests that the average global efficiency of the complete graph is one.
|
||
|
"""
|
||
|
for n in range(2, 10):
|
||
|
G = nx.complete_graph(n)
|
||
|
assert nx.global_efficiency(G) == 1
|
||
|
|
||
|
def test_local_efficiency_complete_graph(self):
|
||
|
"""
|
||
|
Test that the local efficiency for a complete graph with at least 3
|
||
|
nodes should be one. For a graph with only 2 nodes, the induced
|
||
|
subgraph has no edges.
|
||
|
"""
|
||
|
for n in range(3, 10):
|
||
|
G = nx.complete_graph(n)
|
||
|
assert nx.local_efficiency(G) == 1
|
||
|
|
||
|
def test_using_ego_graph(self):
|
||
|
"""
|
||
|
Test that the ego graph is used when computing local efficiency.
|
||
|
For more information, see GitHub issue #2710.
|
||
|
"""
|
||
|
assert nx.local_efficiency(self.G3) == 7 / 12
|