diff --git a/OrigamiPatterns/Hypar.py b/OrigamiPatterns/Hypar.py
deleted file mode 100644
index 699b563d..00000000
--- a/OrigamiPatterns/Hypar.py
+++ /dev/null
@@ -1,112 +0,0 @@
-#! /usr/bin/env python3
-
-import numpy as np
-from math import pi, tan, sqrt, sin, cos
-import inkex
-from Path import Path
-from Pattern import Pattern
-
-class Hypar(Pattern):
- def __init__(self):
- Pattern.__init__(self) # Must be called in order to parse common options
- self.add_argument("-p", "--pattern", default="template1", help="Origami pattern")
- self.add_argument("--radius", type=float, default=10.0, help="Radius of tower (mm)")
- self.add_argument("--sides", type=int, default=4, help="Number of polygon sides")
- self.add_argument("--rings", type=int, default=7, help="Number of rings")
- self.add_argument("--simplify_center", type=inkex.Boolean, default=0, help="Simplify center")
-
- def generate_path_tree(self):
- """ Specialized path generation for your origami pattern
- """
- # retrieve saved parameters
- unit_factor = self.calc_unit_factor()
- vertex_radius = self.options.vertex_radius * unit_factor
- pattern = self.options.pattern
- radius = self.options.radius * unit_factor
- sides = self.options.sides
- rings = self.options.rings
- simplify_center = self.options.simplify_center
- sin_ = sin(pi / float(sides))
- a = radius*sin_ # half of length of polygon side
- H = radius*sqrt(1 - sin_**2)
-
- polygon = Path.generate_polygon(sides, radius, 'e')
-
- # # OLD diagonals generation with universal creases
- # diagonals = []
- # for i in range(sides):
- # diagonals.append(Path([(0, 0), polygon.points[i]], 'u'))
- # points = [(x, y) for x, y in polygon.points]
- # diagonals = diagonals + [Path.generate_separated_paths(points, 'm')]
-
- # # modify center if needed
- # if simplify_center:
- # for i in range(sides):
- # if i % 2 == 0:
- # p2 = diagonals[i].points[1]
- # diagonals[i].points[0] = (1. / (rings + 1) * p2[0], 1. / (rings + 1) * p2[1])
-
- # separate generic closed ring to create edges
- self.edge_points = polygon.points
-
- # vertex and diagonal lines creation
- vertex_line = []
- diagonal_line = []
- for i in range(1, rings + 2):
- y1 = a * (float(i - 1) / (rings + 1.))
- x1 = H * float(i - 1) / (rings + 1.)
- y2 = a * (float(i) / (rings + 1.))
- x2 = H * float(i) / (rings + 1.)
- vertex_line.append((Path((x2, y2), style='p', radius=vertex_radius)))
- diagonal_line.append((Path([(x1, y1), (x2, y2)], style='m' if i % 2 else 'v')))
-
- # rotation of vertices and diagonals for completing the drawing
- diagonals = []
- vertices = [Path((0, 0), style='p', radius=vertex_radius)]
- for i in range(sides):
- vertices = vertices+Path.list_rotate(vertex_line, i * 2 * pi / float(sides))
- diagonals = diagonals+[Path.list_rotate(diagonal_line, i * 2 * pi / float(sides))]
-
- # modify center if needed
- if simplify_center:
- for i in range(sides):
- if i % 2 == 0:
- del diagonals[i][0]
-
- # inkex.debug(len(diagonals))
- # inkex.debug(len(diagonals[0]))
- # diagonals = diagonals + diagonal
-
- # scale generic closed ring to create inner rings
- inner_rings = []
- for i in range(rings + 1):
- inner_rings.append(polygon * (float(i)/(rings+1)))
- inner_rings[i].style = 'v' if i % 2 else 'm'
-
- # create points for zig zag pattern
- zig_zags = []
- if pattern != "classic":
- zig_zag = []
- for i in range(1, rings + 1):
- y_out = a * ((i + 1.) / (rings + 1.))
- y_in = a * (float(i) / (rings + 1.))
- x_out = H * (i + 1.) / (rings + 1.)
- x_in = H * float(i) / (rings + 1.)
-
- if pattern == "alternate_asymmetric" and i % 2:
- zig_zag.append(Path([(x_in, -y_in), (x_out, +y_out)], style='u'))
- else:
- zig_zag.append(Path([(x_in, +y_in), (x_out, -y_out)], style='u'))
-
- # reflect zig zag pattern to create all sides
- zig_zags.append(zig_zag)
- for i in range(sides - 1):
- points = diagonals[i][0].points
- zig_zags.append(Path.list_reflect(zig_zags[i], points[0], points[1]))
-
- self.translate = (radius, radius)
- self.path_tree = [diagonals, zig_zags, inner_rings, vertices]
-
-# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
-if __name__ == '__main__':
- Hypar().run()
\ No newline at end of file
diff --git a/OrigamiPatterns/Kresling.py b/OrigamiPatterns/Kresling.py
deleted file mode 100644
index 6c3ef0d1..00000000
--- a/OrigamiPatterns/Kresling.py
+++ /dev/null
@@ -1,154 +0,0 @@
-#! /usr/bin/env python3
-
-from math import pi, sin, cos, tan, acos, sqrt
-import inkex
-from Path import Path
-from Pattern import Pattern
-
-class Kresling(Pattern):
- def __init__(self):
- Pattern.__init__(self) # Must be called in order to parse common options
- self.add_argument("-p", "--pattern", default="kresling", help="Origami pattern")
- self.add_argument("--lines", type=int, default=1, help="Number of lines")
- self.add_argument("--sides", type=int, default=3, help="Number of polygon sides")
- self.add_argument("--add_attachment", type=inkex.Boolean, default=False, help="Add attachment?")
- self.add_argument("--attachment_percentage", type=float, default=100., help="Length percentage of extra facet")
- self.add_argument("--mirror_cells", type=inkex.Boolean, default=False, help="Mirror odd cells?")
-
- @staticmethod
- def generate_kresling_zigzag(sides, radius, angle_ratio, add_attachment):
-
- theta = (pi / 2.) * (1 - 2. / sides)
- l = 2. * radius * cos(theta * (1. - angle_ratio))
- a = 2. * radius * sin(pi / sides)
- # b = sqrt(a * a + l * l - 2 * a * l * cos(angle_ratio * theta))
- # phi = abs(acos((l * l + b * b - a * a) / (2 * l * b)))
- # gamma = pi / 2 - angle_ratio * theta - phi
- dy = l * sin(theta * angle_ratio)
- dx = l * cos(theta * angle_ratio) - a
-
- points = []
- styles = []
-
- for i in range(sides):
- points.append((i * a, 0))
- points.append(((i + 1) * a + dx, -dy))
- styles.append('v')
- if i != sides - 1:
- styles.append('m')
- elif add_attachment:
- points.append((sides * a, 0))
- styles.append('m')
-
- path = Path.generate_separated_paths(points, styles)
- return path
-
- def generate_path_tree(self):
- """ Specialized path generation for Waterbomb tesselation pattern
- """
- unit_factor = self.calc_unit_factor()
- vertex_radius = self.options.vertex_radius * unit_factor
- lines = self.options.lines
- sides = self.options.sides
- radius = self.options.radius * unit_factor
- angle_ratio = self.options.angle_ratio
- mirror_cells = self.options.mirror_cells
-
- theta = (pi/2.)*(1 - 2./sides)
- l = 2.*radius*cos(theta*(1.-angle_ratio))
- a = 2.*radius*sin(pi/sides)
- # b = sqrt(a*a + l*l - 2*a*l*cos(angle_ratio*theta))
- # phi = abs(acos((l*l + b*b - a*a)/(2*l*b)))
- # gamma = pi/2 - angle_ratio*theta - phi
- # dy = b*cos(gamma)
- # dx = b*sin(gamma)
- dy = l * sin(theta * angle_ratio)
- dx = l * cos(theta * angle_ratio) - a
-
- add_attachment = self.options.add_attachment
- attachment_percentage = self.options.attachment_percentage/100.
- attachment_height = a*(attachment_percentage-1)*tan(angle_ratio*theta)
-
- vertices = []
- for i in range(sides + 1):
- for j in range(lines + 1):
- if mirror_cells:
- vertices.append(Path((dx*((lines - j)%2) + a*i, dy*j), style='p', radius=vertex_radius))
- else:
- vertices.append(Path((dx*(lines - j) + a*i, dy*j), style='p', radius=vertex_radius))
-
- # create a horizontal grid, then offset each line according to angle
- grid_h = Path.generate_hgrid([0, a * sides], [0, dy * lines], lines, 'm')
-
-
- if not mirror_cells:
- # shift every mountain line of the grid to the right by increasing amounts
- grid_h = Path.list_add(grid_h, [(i * dx, 0) for i in range(lines - 1, 0, -1)])
- else:
- # shift every OTHER mountain line of the grid a bit to the right
- grid_h = Path.list_add(grid_h, [((i%2)*dx, 0) for i in range(lines-1, 0, -1)])
- if add_attachment:
- for i in range(lines%2, lines-1, 2):
- # hacky solution, changes length of every other mountain line
- grid_h[i].points[1-i%2] = (grid_h[i].points[1-i%2][0] + a*attachment_percentage, grid_h[i].points[1-i%2][1])
-
-
- # create MV zigzag for Kresling pattern
- zigzag = Kresling.generate_kresling_zigzag(sides, radius, angle_ratio, add_attachment)
- zigzags = []
-
- # duplicate zigzag pattern for desired number of cells
- if not mirror_cells:
- for i in range(lines):
- zigzags.append(Path.list_add(zigzag, (i * dx, (lines - i) * dy)))
- else:
- zigzag_mirror = Path.list_reflect(zigzag, (0, lines * dy / 2), (dx, lines * dy / 2))
- for i in range(lines):
- if i % 2 == 1:
- zigzags.append(Path.list_add(zigzag_mirror, (0, -(lines - i + (lines-1)%2) * dy)))
- else:
- zigzags.append(Path.list_add(zigzag, (0, (lines - i) * dy)))
-
- # create edge strokes
- if not mirror_cells:
- self.edge_points = [
- (a * sides , dy * lines), # bottom right
- (0 , dy * lines), # bottom left
- (dx * lines , 0), # top left
- (dx * lines + a * sides, 0)] # top right
-
- if add_attachment:
- for i in range(lines):
- x = dx * (lines - i) + a * (sides + attachment_percentage)
- self.edge_points.append((x, dy * i))
- self.edge_points.append((x, dy * i - attachment_height))
- if i != lines - 1:
- self.edge_points.append((x-dx-a*attachment_percentage, dy * (i + 1)))
- pass
-
- else:
- self.edge_points = [(a * sides + (lines % 2)*dx, 0)]
-
- for i in range(lines+1):
- self.edge_points.append([((lines+i) % 2)*dx, dy*i])
-
- self.edge_points.append([a * sides + ((lines+i) %2)*dx, lines*dy])
-
- if add_attachment:
- for i in range(lines + 1):
-
- if not i%2 == 0:
- self.edge_points.append([a*sides + (i%2)*(dx+a*attachment_percentage), dy*(lines - i) - (i%2)*attachment_height])
- self.edge_points.append([a*sides + (i%2)*(dx+a*attachment_percentage), dy*(lines - i)])
- if (i != lines):
- self.edge_points.append([a * sides + (i % 2) * (dx + a * attachment_percentage), dy * (lines - i) + (i % 2) * attachment_height])
- else:
- self.edge_points.append([a * sides + (i % 2) * (dx + a * attachment_percentage), dy * (lines - i)])
- else:
- for i in range(lines + 1):
- self.edge_points.append([a*sides + (i%2)*dx, dy*(lines - i)])
-
- self.path_tree = [grid_h, zigzags, vertices]
-
-if __name__ == '__main__':
- Kresling().run()
\ No newline at end of file
diff --git a/OrigamiPatterns/Kresling_full.py b/OrigamiPatterns/Kresling_full.py
deleted file mode 100644
index 5d55d004..00000000
--- a/OrigamiPatterns/Kresling_full.py
+++ /dev/null
@@ -1,89 +0,0 @@
-#! /usr/bin/env python3
-
-from math import sin, cos, sqrt, asin, pi, ceil
-import inkex
-from Path import Path
-from Pattern import Pattern
-from Kresling import Kresling
-
-
-class Kresling_Full(Kresling):
-
- def __init__(self):
- """ Constructor
- """
- Kresling.__init__(self) # Must be called in order to parse common options
-
- self.add_argument('--measure_value', type=float, default=10.0, help="Length")
- self.add_argument('--measure_type', default=60, help="Type of length")
- self.add_argument('--parameter_type', default=60, help="Type of parameter")
- self.add_argument('--radial_ratio', type=float, default=0.5, help="Radial ratio")
- self.add_argument('--angle_ratio', type=float, default=0.5, help="Anle ratio")
- self.add_argument('--lambdatheta', type=float, default=45, help="lambdatheta")
-
- def generate_path_tree(self):
- """ Convert radial to angular ratio, then call regular Kresling constructor
- """
- n = self.options.sides
- theta = pi*(n-2)/(2*n)
- # define ratio parameter
- parameter = self.options.parameter_type
- if parameter == 'radial_ratio':
- radial_ratio = self.options.radial_ratio
- max_radial_ratio = sin((pi/4)*(1. - 2./n))
- if radial_ratio > max_radial_ratio:
- inkex.errormsg(_("For polygon of {} sides, the maximal radial ratio is = {}".format(n, max_radial_ratio)))
- radial_ratio = max_radial_ratio
- self.options.angle_ratio = 1 - 2*n*asin(radial_ratio)/((n-2)*pi)
-
- elif parameter == 'lambdatheta':
- lambdatheta = self.options.lambdatheta
- angle_min = 45. * (1 - 2. / n)
- angle_max = 2 * angle_min
- if lambdatheta < angle_min:
- inkex.errormsg(_(
- "For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
- n, angle_min, angle_max, angle_min)))
- lambdatheta = angle_min
- elif lambdatheta > angle_max:
- inkex.errormsg(_(
- "For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
- n, angle_min, angle_max, angle_max)))
- lambdatheta = angle_max
- self.options.angle_ratio = lambdatheta * n / (90. * (n - 2.))
-
-
- # define some length
- mtype = self.options.measure_type
- mvalue = self.options.measure_value
- angle_ratio = self.options.angle_ratio
- if mtype == 'a':
- radius = 0.5*mvalue / (sin(pi/n))
- if mtype == 'b':
- A = cos(theta*(1-angle_ratio))
- B = sin(pi/n)
- C = cos(theta*angle_ratio)
- radius = 0.5*mvalue / sqrt(A**2 + B**2 - 2*A*B*C)
- elif mtype == 'l':
- radius = 0.5*mvalue/cos(theta*(1-angle_ratio))
- elif mtype == 'radius_external':
- radius = mvalue
- elif mtype == 'radius_internal':
- radius = mvalue/(sin(theta*(1-angle_ratio)))
- elif mtype == 'diameter_external':
- radius = 0.5*mvalue
- elif mtype == 'diameter_internal':
- radius = 0.5*mvalue/sin(theta*(1-angle_ratio))
-
- # inkex.errormsg(_("Value = {}, Mode = {}, Radius = {}".format(mvalue, mtype, radius)))
-
- if self.options.pattern == 'mirrowed':
- self.options.mirror_cells = True
- else:
- self.options.mirror_cells = False
- self.options.radius = radius
-
- Kresling.generate_path_tree(self)
-
-if __name__ == '__main__':
- Kresling_Full().run()
\ No newline at end of file
diff --git a/OrigamiPatterns/Path.py b/OrigamiPatterns/Path.py
deleted file mode 100644
index ceab873c..00000000
--- a/OrigamiPatterns/Path.py
+++ /dev/null
@@ -1,466 +0,0 @@
-#! /usr/bin/env python3
-
-import inkex
-from lxml import etree
-from math import sin, cos, pi
-
-class Path:
- """ Class that defines an svg stroke to be drawn in Inkscape
-
- Attributes
- ---------
- points: tuple or list of tuples
- Points defining stroke lines.
- style: str
- Single character defining style of stroke. Default values are:
- 'm' for mountain creases
- 'v' for valley creases
- 'e' for edge borders
- Extra possible values:
- 'u' for universal creases
- 's' for semicreases
- 'c' for kirigami cuts
- closed: bool
- Tells if desired path should contain a last stroke from the last point to the first point, closing the path
- radius: float
- If only one point is given, it's assumed to be a circle and radius sets the radius
-
-
- Methods
- ---------
- invert(self)
- Inverts path
-
- Overloaded Operators
- ---------
- __add__(self, offsets)
- Adding a tuple to a Path returns a new path with all points having an offset defined by the tuple
-
- __mul__(self, transform)
- Define multiplication of a Path to a vector in complex exponential representation
-
-
- Static Methods
- ---------
- draw_paths_recursively(path_tree, group, styles_dict)
- Draws strokes defined on "path_tree" to "group". Styles dict maps style of path_tree element to the definition
- of the style. Ex.:
- if path_tree[i].style = 'm', styles_dict must have an element 'm'.
-
- generate_hgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False)
- Generate list of Path instances, in which each Path is a stroke defining a horizontal grid dividing the space
- xlims * ylims nb_of_divisions times.
-
- generate_vgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False)
- Generate list of Path instances, in which each Path is a stroke defining a vertical grid dividing the space
- xlims * ylims nb_of_divisions times.
-
- generate_separated_paths(cls, points, styles, closed=False)
- Generate list of Path instances, in which each Path is the stroke between each two point tuples, in case each
- stroke must be handled separately
-
- reflect(cls, path, p1, p2)
- Reflects each point of path on line defined by two points and return new Path instance with new reflected points
-
- list_reflect(cls, paths, p1, p2)
- Generate list of new Path instances, rotation each path by transform
-
- list_rotate(cls, paths, theta, translation=(0, 0))
- Generate list of new Path instances, rotation each path by transform
-
- list_add(cls, paths, offsets)
- Generate list of new Path instances, adding a different tuple for each list
-
-
- """
-
- def __init__(self, points, style, closed=False, invert=False, radius=0.1, separated=False):
- """ Constructor
-
- Parameters
- ---------
- points: list of 2D tuples
- stroke will connect all points
- style: str
- Single character defining style of stroke. For use with the OrigamiPatterns class (probably the only
- project that will ever use this file) the default values are:
- 'm' for mountain creases
- 'v' for valley creases
- 'e' for edge borders
- closed: bool
- if true, last point will be connected to first point at the end
- invert: bool
- if true, stroke will start at the last point and go all the way to the first one
- """
- if type(points) == list and len(points) != 1:
- self.type = 'linear'
- if invert:
- self.points = points[::-1]
- else:
- self.points = points
-
- elif (type(points) == list and len(points) == 1):
- self.type = 'circular'
- self.points = points
- self.radius = radius
-
- elif (type(points) == tuple and len(points) == 2):
- self.type = 'circular'
- self.points = [points]
- self.radius = radius
-
- else:
- raise TypeError("Points must be tuple of length 2 (for a circle) or a list of tuples of length 2 each")
-
- self.style = style
- self.closed = closed
-
- def invert(self):
- """ Inverts path
- """
- self.points = self.points[::-1]
-
- """
- Draw path recursively
- - Static method
- - Draws strokes defined on "path_tree" to "group"
- - Inputs:
- -- path_tree [nested list] of Path instances
- -- group [etree.SubElement]
- -- styles_dict [dict] containing all styles for path_tree
- """
- @staticmethod
- def draw_paths_recursively(path_tree, group, styles_dict):
- """ Static method, draw list of Path instances recursively
- """
- for subpath in path_tree:
- if type(subpath) == list:
- if len(subpath) == 1:
- subgroup = group
- else:
- subgroup = etree.SubElement(group, 'g')
- Path.draw_paths_recursively(subpath, subgroup, styles_dict)
- else:
- if styles_dict[subpath.style]['draw']:
- if subpath.type == 'linear':
-
- points = subpath.points
- path = 'M{},{} '.format(*points[0])
- for i in range(1, len(points)):
- path = path + 'L{},{} '.format(*points[i])
- if subpath.closed:
- path = path + 'L{},{} Z'.format(*points[0])
-
- attribs = {'style': str(inkex.Style(styles_dict[subpath.style])), 'd': path}
- etree.SubElement(group, inkex.addNS('path', 'svg'), attribs)
- else:
- attribs = {'style': str(inkex.Style(styles_dict[subpath.style])),
- 'cx': str(subpath.points[0][0]), 'cy': str(subpath.points[0][1]),
- 'r': str(subpath.radius)}
- etree.SubElement(group, inkex.addNS('circle', 'svg'), attribs)
-
- @classmethod
- def generate_hgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False):
- """ Generate list of Path instances, in which each Path is a stroke defining
- a horizontal grid dividing the space xlims * ylims nb_of_divisions times.
-
- All lines are alternated, to minimize Laser Cutter unnecessary movements
-
- Parameters
- ---------
- xlims: tuple
- Defines x_min and x_max for space that must be divided.
- ylims: tuple
- Defines y_min and y_max for space that must be divided.
- nb_of_divisions: int
- Defines how many times it should be divided.
- style: str
- Single character defining style of stroke.
- include_edge: bool
- Defines if edge should be drawn or not.
-
- Returns
- ---------
- paths: list of Path instances
- """
- rect_len = (ylims[1] - ylims[0])/nb_of_divisions
- hgrid = []
- for i in range(1 - include_edge, nb_of_divisions + include_edge):
- hgrid.append(cls([(xlims[0], ylims[0]+i*rect_len),
- (xlims[1], ylims[0]+i*rect_len)],
- style=style, invert=i % 2 == 0))
- return hgrid
-
- @classmethod
- def generate_vgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False):
- """ Generate list of Path instances, in which each Path is a stroke defining
- a vertical grid dividing the space xlims * ylims nb_of_divisions times.
-
- All lines are alternated, to minimize Laser Cutter unnecessary movements
-
- Parameters
- ---------
- -> refer to generate_hgrid
-
- Returns
- ---------
- paths: list of Path instances
- """
- rect_len = (xlims[1] - xlims[0])/nb_of_divisions
- vgrid = []
- for i in range(1 - include_edge, nb_of_divisions + include_edge):
- vgrid.append(cls([(xlims[0]+i*rect_len, ylims[0]),
- (xlims[0]+i*rect_len, ylims[1])],
- style=style, invert=i % 2 == 0))
- return vgrid
-
- @classmethod
- def generate_polygon(cls, sides, radius, style, center=(0, 0)):
- points = []
- for i in range(sides):
- points.append((radius * cos((1 + i * 2) * pi / sides),
- radius * sin((1 + i * 2) * pi / sides)))
- return Path(points, style, closed=True)
-
- @classmethod
- def generate_separated_paths(cls, points, styles, closed=False):
- """ Generate list of Path instances, in which each Path is the stroke
- between each two point tuples, in case each stroke must be handled separately.
-
- Returns
- ---------
- paths: list
- list of Path instances
- """
- paths = []
- if type(styles) == str:
- styles = [styles] * (len(points) - 1 + int(closed))
- elif len(styles) != len(points) - 1 + int(closed):
- raise TypeError("Number of paths and styles don't match")
- for i in range(len(points) - 1 + int(closed)):
- j = (i+1)%len(points)
- paths.append(cls([points[i], points[j]],
- styles[i]))
- return paths
-
- def __add__(self, offsets):
- """ " + " operator overload.
- Adding a tuple to a Path returns a new path with all points having an offset
- defined by the tuple
- """
- if type(offsets) == list:
- if len(offsets) != 1 or len(offsets) != len(self.points):
- raise TypeError("Paths can only be added by a tuple of a list of N tuples, "
- "where N is the same number of points")
-
- elif type(offsets) != tuple:
- raise TypeError("Paths can only be added by tuples")
- else:
- offsets = [offsets] * len(self.points)
-
- # if type(self.points) == list:
- points_new = []
- for point, offset in zip(self.points, offsets):
- points_new.append((point[0]+offset[0],
- point[1]+offset[1]))
-
- if self.type == 'circular':
- radius = self.radius
- else:
- radius = 0.2
-
- # if self.type == 'circular' else 0.1
-
- return Path(points_new, self.style, self.closed, radius=radius)
-
- @classmethod
- def list_add(cls, paths, offsets):
- """ Generate list of new Path instances, adding a different tuple for each list
-
- Parameters
- ---------
- paths: Path or list
- list of N Path instances
- offsets: tuple or list
- list of N tuples
-
- Returns
- ---------
- paths_new: list
- list of N Path instances
- """
- if type(paths) == Path and type(offsets) == tuple:
- paths = [paths]
- offsets = [offsets]
- elif type(paths) == list and type(offsets) == tuple:
- offsets = [offsets] * len(paths)
- elif type(paths) == Path and type(offsets) == list:
- paths = [paths] * len(offsets)
- elif type(paths) == list and type(offsets) == list:
- if len(paths) == 1:
- paths = [paths[0]] * len(offsets)
- elif len(offsets) == 1:
- offsets = [offsets[0]] * len(paths)
- elif len(offsets) != len(paths):
- raise TypeError("List of paths and list of tuples must have same length. {} paths and {} offsets "
- " where given".format(len(paths), len(offsets)))
- else:
- pass
-
- paths_new = []
- for path, offset in zip(paths, offsets):
- paths_new.append(path+offset)
-
- return paths_new
-
- def __mul__(self, transform):
- """ " * " operator overload.
- Define multiplication of a Path to a vector in complex exponential representation
-
- Parameters
- ---------
- transform: float of tuple of length 2 or 4
- if float, transform represents magnitude
- Example: path * 3
- if tuple length 2, transform[0] represents magnitude and transform[1] represents angle of rotation
- Example: path * (3, pi)
- if tuple length 4, transform[2],transform[3] define a different axis of rotation
- Example: path * (3, pi, 1, 1)
- """
- points_new = []
-
- # "temporary" (probably permanent) compatibility hack
- try:
- long_ = long
- except:
- long_ = int
-
- if isinstance(transform, (int, long_, float)):
- for p in self.points:
- points_new.append((transform * p[0],
- transform * p[1]))
-
- elif isinstance(transform, (list, tuple)):
- if len(transform) == 2:
- u = transform[0]*cos(transform[1])
- v = transform[0]*sin(transform[1])
- x_, y_ = 0, 0
- elif len(transform) == 4:
- u = transform[0]*cos(transform[1])
- v = transform[0]*sin(transform[1])
- x_, y_ = transform[2:]
- else:
- raise IndexError('Paths can only be multiplied by a number or a tuple/list of length 2 or 4')
-
- for p in self.points:
- x, y = p[0]-x_, p[1]-y_
- points_new.append((x_ + x * u - y * v,
- y_ + x * v + y * u))
- else:
- raise TypeError('Paths can only be multiplied by a number or a tuple/list of length 2 or 4')
-
- if self.type == 'circular':
- radius = self.radius
- else:
- radius = 0.2
-
- return Path(points_new, self.style, self.closed, radius=radius)
-
- @classmethod
- def list_rotate(cls, paths, theta, translation=(0, 0)):
- """ Generate list of new Path instances, rotation each path by transform
-
- Parameters
- ---------
- paths: Path or list
- list of N Path instances
- theta: float (radians)
- angle of rotation
- translation: tuple or list 2
- axis of rotation
-
- Returns
- ---------
- paths_new: list
- list of N Path instances
- """
- if len(translation) != 2:
- TypeError("Translation must have length 2")
-
- if type(paths) != list:
- paths = [paths]
-
- paths_new = []
- for path in paths:
- paths_new.append(path*(1, theta, translation[0], translation[1]))
-
- if len(paths_new) == 1:
- paths_new = paths_new[0]
- return paths_new
-
- # TODO:
- # Apparently it's not working properly, must be debugged and tested
- @classmethod
- def reflect(cls, path, p1, p2):
- """ Reflects each point of path on line defined by two points and return new Path instance with new reflected points
-
- Parameters
- ---------
- path: Path
- p1: tuple or list of size 2
- p2: tuple or list of size 2
-
- Returns
- ---------
- path_reflected: Path
- """
-
- (x1, y1) = p1
- (x2, y2) = p2
-
- if x1 == x2 and y1 == y2:
- ValueError("Duplicate points don't define a line")
- elif x1 == x2:
- t_x = [-1, 0, 2*x1, 1]
- t_y = [0, 1, 0, 1]
- else:
- m = (y2 - y1)/(x2 - x1)
- t = y1 - m*x1
- t_x = [1 - m**2, 2*m, -2*m*t, m**2 + 1]
- t_y = [2*m, m**2 - 1, +2*t, m**2 + 1]
-
- points_new = []
- for p in path.points:
- x_ = (t_x[0]*p[0] + t_x[1]*p[1] + t_x[2]) / t_x[3]
- y_ = (t_y[0]*p[0] + t_y[1]*p[1] + t_y[2]) / t_y[3]
- points_new.append((x_, y_))
-
- return Path(points_new, path.style, path.closed)
-
- # TODO:
- # Apparently it's not working properly, must be debugged and tested
- @classmethod
- def list_reflect(cls, paths, p1, p2):
- """ Generate list of new Path instances, rotation each path by transform
-
- Parameters
- ---------
- paths: Path or list
- list of N Path instances
- p1: tuple or list of size 2
- p2: tuple or list of size 2
-
- Returns
- ---------
- paths_new: list
- list of N Path instances
- """
-
- if type(paths) == Path:
- paths = [paths]
-
- paths_new = []
- for path in paths:
- paths_new.append(Path.reflect(path, p1, p2))
-
- return paths_new
\ No newline at end of file
diff --git a/OrigamiPatterns/Pattern.py b/OrigamiPatterns/Pattern.py
deleted file mode 100644
index 370b0178..00000000
--- a/OrigamiPatterns/Pattern.py
+++ /dev/null
@@ -1,263 +0,0 @@
-#! /usr/bin/env python3
-
-import os
-from abc import abstractmethod
-from lxml import etree
-from Path import Path, inkex
-
-class Pattern(inkex.Effect):
- @abstractmethod
- def generate_path_tree(self):
- """ Generate nested list of Path instances
- Abstract method, must be defined in all child classes
- """
- pass
-
- def __init__(self):
- inkex.Effect.__init__(self) # initialize the super class
- self.add_argument = self.arg_parser.add_argument
- self.add_argument("-u", "--units", default='mm', help="Units this dialog is using")
-
- # self.add_argument("-a", "--add_attachment", type=inkex.Boolean, default=False, help="command line help")
- # self.add_argument("", "--accuracy", type=int, default=0, help="command line help")
-
- # --------------------------------------------------------------------------------------------------------------
- # mountain options
- self.add_argument('-m', '--mountain_stroke_color', default=4278190335, help='The mountain creases color.')
- self.add_argument('--mountain_stroke_width', type=float, default=0.1, help='Width of mountain strokes.')
- self.add_argument('--mountain_dashes_len', type=float, default=1.0, help='Mountain dash + gap length.')
- self.add_argument('--mountain_dashes_duty', type=float, default=0.5, help='Mountain dash duty cycle.')
- self.add_argument('--mountain_dashes_bool', type=inkex.Boolean, default=True, help='Dashed strokes?')
- self.add_argument('--mountain_bool', type=inkex.Boolean, default=True, help='Draw mountains?')
-
- # --------------------------------------------------------------------------------------------------------------
- # valley options
- self.add_argument('-v', '--valley_stroke_color', default=65535, help='The valley creases color.')
- self.add_argument('--valley_stroke_width', type=float, default=0.1, help='Width of valley strokes.')
- self.add_argument('--valley_dashes_len', type=float, default=1.0, help='Valley dash + gap length.')
- self.add_argument('--valley_dashes_duty', type=float, default=0.25, help='Valley dash duty cycle.')
- self.add_argument('--valley_dashes_bool', type=inkex.Boolean, default=True, help='Dashed strokes?')
- self.add_argument('--valley_bool', type=inkex.Boolean, default=True, help='Draw valleys?')
-
- # --------------------------------------------------------------------------------------------------------------
- # edge options
- self.add_argument('-e', '--edge_stroke_color', default=255, help='The mountain creases color.')
- self.add_argument('--edge_stroke_width', type=float, default=0.1, help='Width of edge strokes.')
- self.add_argument('--edge_dashes_len', type=float, default=1.0, help='Edge dash + gap length.')
- self.add_argument('--edge_dashes_duty', type=float, default=0.25, help='Edge dash duty cycle.')
- self.add_argument('--edge_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
- self.add_argument('--edge_bool', type=inkex.Boolean, default=True, help='Draw edges?')
- self.add_argument('--edge_single_path', type=inkex.Boolean, default=True, help='Edges as single path?')
-
- # --------------------------------------------------------------------------------------------------------------
- # universal crease options
- self.add_argument('--universal_stroke_color', default=4278255615, help='The universal creases color.')
- self.add_argument('--universal_stroke_width', type=float, default=0.1, help='Width of universal strokes.')
- self.add_argument('--universal_dashes_len', type=float, default=1.0, help='Universal dash + gap length.')
- self.add_argument('--universal_dashes_duty', type=float, default=0.25, help='Universal dash duty cycle.')
- self.add_argument('--universal_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
- self.add_argument('--universal_bool', type=inkex.Boolean, default=True, help='Draw universal creases?')
-
- # --------------------------------------------------------------------------------------------------------------
- # semicrease options
- self.add_argument('--semicrease_stroke_color', default=4294902015, help='The semicrease creases color.')
- self.add_argument('--semicrease_stroke_width', type=float, default=0.1, help='Width of semicrease strokes.')
- self.add_argument('--semicrease_dashes_len', type=float, default=1.0, help='Semicrease dash + gap length.')
- self.add_argument('--semicrease_dashes_duty', type=float,default=0.25, help='Semicrease dash duty cycle.')
- self.add_argument('--semicrease_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
- self.add_argument('--semicrease_bool', type=inkex.Boolean, default=True, help='Draw semicreases?')
-
- # --------------------------------------------------------------------------------------------------------------
- # cut options
- self.add_argument('--cut_stroke_color', default=16711935, help='The cut creases color.')
- self.add_argument('--cut_stroke_width', type=float, default=0.1, help='Width of cut strokes.')
- self.add_argument('--cut_dashes_len', type=float, default=1.0, help='Cut dash + gap length.')
- self.add_argument('--cut_dashes_duty', type=float, default=0.25, help='Cut dash duty cycle.')
- self.add_argument('--cut_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
- self.add_argument('--cut_bool', type=inkex.Boolean, default=True, help='Draw cuts?')
-
- # --------------------------------------------------------------------------------------------------------------
- # vertex options
- self.add_argument('--vertex_stroke_color', default=255, help='Vertices\' color.')
- self.add_argument('--vertex_stroke_width', type=float, default=0.1, help='Width of vertex strokes.')
- self.add_argument('--vertex_radius', type=float, default=0.1, help='Radius of vertices.')
- self.add_argument('--vertex_bool', type=bool, default=True, help='Draw vertices?')
- # here so we can have tabs - but we do not use it directly - else error
- self.add_argument('--active-tab', default='title', help="Active tab.")
-
- self.path_tree = []
- self.edge_points = []
- self.translate = (0, 0)
-
- def effect(self):
- """ Main function, called when the extension is run.
- """
- # construct dictionary containing styles
- self.create_styles_dict()
-
- # get paths for selected origami pattern
- self.generate_path_tree()
-
- # ~ accuracy = self.options.accuracy
- # ~ unit_factor = self.calc_unit_factor()
- # what page are we on
- # page_id = self.options.active_tab # sometimes wrong the very first time
-
- # Translate according to translate attribute
- g_attribs = {inkex.addNS('label', 'inkscape'): '{} Origami pattern'.format(self.options.pattern),
- # inkex.addNS('transform-center-x','inkscape'): str(-bbox_center[0]),
- # inkex.addNS('transform-center-y','inkscape'): str(-bbox_center[1]),
- inkex.addNS('transform-center-x', 'inkscape'): str(0),
- inkex.addNS('transform-center-y', 'inkscape'): str(0),
- 'transform': 'translate(%s,%s)' % self.translate}
-
- # add the group to the document's current layer
- if type(self.path_tree) == list and len(self.path_tree) != 1:
- self.topgroup = etree.SubElement(self.get_layer(), 'g', g_attribs)
- else:
- self.topgroup = self.get_layer()
-
- if len(self.edge_points) == 0:
- Path.draw_paths_recursively(self.path_tree, self.topgroup, self.styles_dict)
- elif self.options.edge_single_path:
- edges = Path(self.edge_points, 'e', closed=True)
- Path.draw_paths_recursively(self.path_tree + [edges], self.topgroup, self.styles_dict)
- else:
- edges = Path.generate_separated_paths(self.edge_points, 'e', closed=True)
- Path.draw_paths_recursively(self.path_tree + edges, self.topgroup, self.styles_dict)
-
- # self.draw_paths_recursively(self.path_tree, self.topgroup, self.styles_dict)
-
- # compatibility hack
- def get_layer(self):
- try:
- return self.svg.get_current_layer() # new
- except:
- return self.current_layer # old
-
- def create_styles_dict(self):
- """ Get stroke style parameters and use them to create the styles dictionary, used for the Path generation
- """
- unit_factor = self.calc_unit_factor()
-
- # define colour and stroke width
- mountain_style = {'draw': self.options.mountain_bool,
- 'stroke': self.get_color_string(self.options.mountain_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.mountain_stroke_width*unit_factor}
-
- valley_style = {'draw': self.options.valley_bool,
- 'stroke': self.get_color_string(self.options.valley_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.valley_stroke_width*unit_factor}
-
- universal_style = {'draw': self.options.universal_bool,
- 'stroke': self.get_color_string(self.options.universal_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.universal_stroke_width*unit_factor}
-
- semicrease_style = {'draw': self.options.semicrease_bool,
- 'stroke': self.get_color_string(self.options.semicrease_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.semicrease_stroke_width*unit_factor}
-
- cut_style = {'draw': self.options.cut_bool,
- 'stroke': self.get_color_string(self.options.cut_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.cut_stroke_width*unit_factor}
-
- edge_style = {'draw': self.options.edge_bool,
- 'stroke': self.get_color_string(self.options.edge_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.edge_stroke_width*unit_factor}
-
- vertex_style = {'draw': self.options.vertex_bool,
- 'stroke': self.get_color_string(self.options.vertex_stroke_color),
- 'fill': 'none',
- 'stroke-width': self.options.vertex_stroke_width*unit_factor}
-
- # check if dashed option selected
- if self.options.mountain_dashes_bool:
- dash = self.options.mountain_dashes_len*self.options.mountain_dashes_duty*unit_factor
- gap = abs(dash - self.options.mountain_dashes_len*unit_factor)
- mountain_style['stroke-dasharray'] = "{},{}".format(dash, gap)
- if self.options.valley_dashes_bool:
- dash = self.options.valley_dashes_len * self.options.valley_dashes_duty*unit_factor
- gap = abs(dash - self.options.valley_dashes_len*unit_factor)
- valley_style['stroke-dasharray'] = "{},{}".format(dash, gap)
- if self.options.edge_dashes_bool:
- dash = self.options.edge_dashes_len * self.options.edge_dashes_duty*unit_factor
- gap = abs(dash - self.options.edge_dashes_len*unit_factor)
- edge_style['stroke-dasharray'] = "{},{}".format(dash, gap)
- if self.options.universal_dashes_bool:
- dash = self.options.universal_dashes_len * self.options.universal_dashes_duty*unit_factor
- gap = abs(dash - self.options.universal_dashes_len*unit_factor)
- universal_style['stroke-dasharray'] = "{},{}".format(dash, gap)
- if self.options.semicrease_dashes_bool:
- dash = self.options.semicrease_dashes_len * self.options.semicrease_dashes_duty*unit_factor
- gap = abs(dash - self.options.semicrease_dashes_len*unit_factor)
- semicrease_style['stroke-dasharray'] = "{},{}".format(dash, gap)
- if self.options.cut_dashes_bool:
- dash = self.options.cut_dashes_len * self.options.cut_dashes_duty*unit_factor
- gap = abs(dash - self.options.cut_dashes_len*unit_factor)
- cut_style['stroke-dasharray'] = "{},{}".format(dash, gap)
-
- self.styles_dict = {'m': mountain_style,
- 'v': valley_style,
- 'u': universal_style,
- 's': semicrease_style,
- 'c': cut_style,
- 'e': edge_style,
- 'p': vertex_style}
-
- def get_color_string(self, longColor, verbose=False):
- """ Convert the long into a #RRGGBB color value
- - verbose=true pops up value for us in defaults
- conversion back is A + B*256^1 + G*256^2 + R*256^3
- """
- # compatibility hack, no "long" in Python 3
- try:
- longColor = long(longColor)
- if longColor < 0: longColor = long(longColor) & 0xFFFFFFFF
- hexColor = hex(longColor)[2:-3]
- except:
- longColor = int(longColor)
- hexColor = hex(longColor)[2:-2]
- inkex.debug = inkex.utils.debug
-
- hexColor = '#' + hexColor.rjust(6, '0').upper()
- if verbose: inkex.debug("longColor = {}, hex = {}".format(longColor,hexColor))
-
- return hexColor
-
- def add_text(self, node, text, position, text_height=12):
- """ Create and insert a single line of text into the svg under node.
- """
- line_style = {'font-size': '%dpx' % text_height, 'font-style':'normal', 'font-weight': 'normal',
- 'fill': '#F6921E', 'font-family': 'Bitstream Vera Sans,sans-serif',
- 'text-anchor': 'middle', 'text-align': 'center'}
- line_attribs = {inkex.addNS('label','inkscape'): 'Annotation',
- 'style': str(Inkex.style(line_style)),
- 'x': str(position[0]),
- 'y': str((position[1] + text_height) * 1.2)
- }
- line = etree.SubElement(node, inkex.addNS('text','svg'), line_attribs)
- line.text = text
-
-
- def calc_unit_factor(self):
- """ Return the scale factor for all dimension conversions.
-
- - The document units are always irrelevant as
- everything in inkscape is expected to be in 90dpi pixel units
- """
- # namedView = self.document.getroot().find(inkex.addNS('namedview', 'sodipodi'))
- # doc_units = self.getUnittouu(str(1.0) + namedView.get(inkex.addNS('document-units', 'inkscape')))
- # backwards compatibility
- try:
- return self.svg.unittouu(str(1.0) + self.options.units)
- except:
- try:
- return inkex.unittouu(str(1.0) + self.options.units)
- except AttributeError:
- return self.unittouu(str(1.0) + self.options.units)
\ No newline at end of file
diff --git a/OrigamiPatterns/Pleat_Circular.py b/OrigamiPatterns/Pleat_Circular.py
deleted file mode 100644
index e7103f27..00000000
--- a/OrigamiPatterns/Pleat_Circular.py
+++ /dev/null
@@ -1,91 +0,0 @@
-#! /usr/bin/env python3
-
-import inkex
-import numpy as np
-from math import pi, sin, cos
-from Path import Path
-from Pattern import Pattern
-
-
-# Select name of class, inherits from Pattern
-# TODO:
-# 1) Implement __init__ method to get all custom options and then call Pattern's __init__
-# 2) Implement generate_path_tree to define all of the desired strokes
-
-class PleatCircular(Pattern):
- def __init__(self):
- Pattern.__init__(self)
- self.add_argument("-p", "--pattern", default="pleat_circular", help="Origami pattern")
- self.add_argument("--radius", type=float, default=55.0, help="Radius of circle")
- self.add_argument("--ratio", type=float, default=0.4, help="Opening ratio")
- self.add_argument("--rings", type=int, default=15, help="Number of rings")
- self.add_argument("--simulation_mode", type=inkex.Boolean, default=True, help="Approximate circle and draw semicreases for simulation?")
- self.add_argument("--sides", type=int, default=20, help="Number of sides for polygon approximating half circle")
-
- def generate_path_tree(self):
- """ Specialized path generation for your origami pattern
- """
- # retrieve saved parameters
- unit_factor = self.calc_unit_factor()
- R = self.options.radius * unit_factor
- ratio = self.options.ratio
- r = R * ratio
- rings = self.options.rings
- dr = (1.-ratio)*R/rings
- self.translate = (R, R)
-
- if not self.options.simulation_mode:
- inner_circles = []
- for i in range(1, rings):
- inner_circles.append(Path((0, 0), radius=r + i*dr, style='m' if i % 2 else 'v'))
-
- edges = [Path((0, 0), radius=R, style='e'),
- Path((0, 0), radius=r, style='e')]
-
- self.path_tree = [inner_circles, edges]
-
- # append semicreases for simulation
- else:
- sides = self.options.sides
- dtheta = pi / sides
- # create diagonals
- diagonals = []
- for i in range(sides):
- p1 = (0, 0)
- p2 = (R * cos((1 + i * 2) * dtheta), R * sin((1 + i * 2) * dtheta))
- diagonals.append(Path([p1, p2], 'u'))
-
- s = sin(dtheta)
- c = cos(dtheta)
-
- # Edge
- paths = [Path([(c * R, -s * R), (R, 0), (c * R, s * R)], style='e'),
- Path([(c * r, -s * r), (r, 0), (c * r, s * r)], style='e')]
-
- # MV circles
- for i in range(1, rings):
- r_i = r + i * dr
- paths.append(Path([(c * r_i, -s * r_i), (r_i, 0), (c * r_i, s * r_i)],
- style='m' if i % 2 else 'v'))
-
- # Semicreases
- top = []
- bottom = []
- for i in range(rings + 1):
- r_i = r + i*dr
- top.append((r_i*(1 + (i % 2)*(c-1)), -(i % 2)*s*r_i))
- bottom.append((r_i*(1 + (i % 2)*(c-1)), (i % 2)*s*r_i))
- paths = paths + [Path([(r, 0), (R, 0)], 's'), # straight line 1
- Path([(r*c, r*s), (R*c, R*s)], 's', invert=True), # straight line 2
- Path(top, 's'), # top half of semicrease pattern
- Path(bottom, 's')] # bottom half of semicrease pattern
-
- all_paths = [paths]
- for i in range(1, sides):
- all_paths.append(Path.list_rotate(all_paths[0], i*2*dtheta))
-
- self.path_tree = all_paths
-
-# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
-if __name__ == '__main__':
- PleatCircular().run()
\ No newline at end of file
diff --git a/OrigamiPatterns/Template.py b/OrigamiPatterns/Template.py
deleted file mode 100644
index c8305726..00000000
--- a/OrigamiPatterns/Template.py
+++ /dev/null
@@ -1,97 +0,0 @@
-#! /usr/bin/env python3
-
-import numpy as np
-from math import pi
-import inkex
-from Path import Path
-from Pattern import Pattern
-
-# Select name of class, inherits from Pattern
-# TODO:
-# 1) Implement __init__ method to get all custom options and then call Pattern's __init__
-# 2) Implement generate_path_tree to define all of the desired strokes
-
-class Template(Pattern):
- def __init__(self):
- Pattern.__init__(self)
- self.add_argument('-p', '--pattern', default="template1", help="Origami pattern")
- self.add_argument('--length', type=float, default=10.0, help="Length of grid square")
- self.add_argument('--theta', type=int, default=0, help="Rotation angle (degree)")
-
- def generate_path_tree(self):
- """ Specialized path generation for your origami pattern
- """
- # retrieve conversion factor for selected unit
- unit_factor = self.calc_unit_factor()
-
- # retrieve saved parameters, and apply unit factor where needed
- length = self.options.length * unit_factor
- vertex_radius = self.options.vertex_radius * unit_factor
- pattern = self.options.pattern
- theta = self.options.theta * pi / 180
-
- # create all Path instances defining strokes
- # first define its points as a list of tuples...
- mountain_h_stroke_points = [(length / 2, 0),
- (length / 2, length)]
- mountain_v_stroke_points = [(0, length / 2),
- (length, length / 2)]
-
- # ... and then create the Path instances, defining its type ('m' for mountain, etc...)
- mountains = [Path(mountain_h_stroke_points, 'm' if pattern == 'template1' else 'v'),
- Path(mountain_v_stroke_points, 'm' if pattern == 'template1' else 'v')]
-
- # doing the same for valleys
- valley_1st_stroke_points = [(0, 0),
- (length, length)]
- valley_2nd_stroke_points = [(0, length),
- (length, 0)]
- valleys = [Path(valley_1st_stroke_points, 'v' if pattern == 'template1' else 'm'),
- Path(valley_2nd_stroke_points, 'v' if pattern == 'template1' else 'm')]
-
-
-
- vertices = []
- for i in range(3):
- for j in range(3):
- vertices.append(Path(((i/2.) * length, (j/2.) * length), style='p', radius=vertex_radius))
-
- # multiplication is implemented as a rotation, and list_rotate implements rotation for list of Path instances
- vertices = Path.list_rotate(vertices, theta, (1 * length, 1 * length))
- mountains = Path.list_rotate(mountains, theta, (1 * length, 1 * length))
- valleys = Path.list_rotate(valleys, theta, (1 * length, 1 * length))
-
- # if Path constructor is called with more than two points, a single stroke connecting all of then will be
- # created. Using method generate_separated_paths, you can instead return a list of separated strokes
- # linking each two points
- # create a list for edge strokes
- edge_points = [(0 * length, 0 * length), # top left
- (1 * length, 0 * length), # top right
- (1 * length, 1 * length), # bottom right
- (0 * length, 1 * length)] # bottom left
-
- # create path from points to be able to use the already built rotate method
- edges = Path(edge_points, 'e', closed=True)
- edges = Path.list_rotate(edges, theta, (1 * length, 1 * length))
-
- # division is implemented as a reflection, and list_reflect implements it for a list of Path instances
- # here's a commented example:
- # line_reflect = (0 * length, 2 * length, 1 * length, 1 * length)
- # mountains = Path.list_reflect(mountains, line_reflect)
- # valleys = Path.list_reflect(valleys, line_reflect)
- # edges = Path.list_reflect(edges, line_reflect)
-
- # IMPORTANT: at the end, save edge points as "self.edge_points", to simplify selection of single or multiple
- # strokes for the edge
- self.edge_points = edges.points
-
- # IMPORTANT: the attribute "path_tree" must be created at the end, saving all strokes
- self.path_tree = [mountains, valleys, vertices]
- # if you decide not to declare "self.edge_points", then the edge must be explicitly created in the path_tree:
- # self.path_tree = [mountains, valleys, vertices, edges]
-
-
-# Main function, creates an instance of the Class and calls self.draw() to draw the origami on inkscape
-# self.draw() is either a call to inkex.affect() or to svg.run(), depending on python version
-if __name__ == '__main__':
- Template().run()
\ No newline at end of file
diff --git a/OrigamiPatterns/Waterbomb.py b/OrigamiPatterns/Waterbomb.py
deleted file mode 100644
index 658ced48..00000000
--- a/OrigamiPatterns/Waterbomb.py
+++ /dev/null
@@ -1,103 +0,0 @@
-#! /usr/bin/env python3
-
-import math
-import numpy as np
-import inkex
-from Path import Path
-from Pattern import Pattern
-
-# TODO:
-# Add fractional column number option
-
-class Waterbomb(Pattern):
- def __init__(self):
- Pattern.__init__(self)
- self.add_argument("-p", "--pattern", default="waterbomb", help="Origami pattern")
- self.add_argument("--pattern_first_line", default="waterbomb", help="Origami pattern")
- self.add_argument("--pattern_last_line", default="waterbomb", help="Origami pattern")
- self.add_argument("--lines", type=int, default=8, help="Number of lines")
- self.add_argument("--columns", type=int, default=16, help="Number of columns")
- self.add_argument("--length", type=float, default=10.0, help="Length of grid square")
- self.add_argument('--phase_shift', type=inkex.Boolean, default=True, help='Shift phase of tesselation.')
-
- def generate_path_tree(self):
- """ Specialized path generation for Waterbomb tesselation pattern
- """
- unit_factor = self.calc_unit_factor()
- length = self.options.length * unit_factor
- vertex_radius = self.options.vertex_radius * unit_factor
- cols = self.options.columns
- lines = self.options.lines
- phase_shift = self.options.phase_shift
- pattern_first_line = self.options.pattern_first_line
- pattern_last_line = self.options.pattern_last_line
-
- # create vertices
- vertex_line_types = [[Path(((i / 2.) * length, 0), style='p', radius=vertex_radius) for i in range(2*cols + 1)],
- [Path((i * length, 0), style='p', radius=vertex_radius) for i in range(cols + 1)],
- [Path(((i + 0.5) * length, 0), style='p', radius=vertex_radius) for i in range(cols)]]
-
- vertices = []
- for i in range(2*lines + 1):
- if i % 2 == 0 or (pattern_first_line == 'magic_ball' and i == 1) or (pattern_last_line == 'magic_ball' and i == 2*lines - 1):
- type = 0
- elif(i/2 + phase_shift) % 2 == 0:
- type = 1
- else:
- type = 2
- vertices = vertices + Path.list_add(vertex_line_types[type], (0, 0.5*i*length))
-
- # create a list for the horizontal creases and another for the vertical creases
- # alternate strokes to minimize laser cutter path
- corr_fist_line = length/2 if pattern_first_line == 'magic_ball' else 0
- corr_last_line = length/2 if pattern_last_line == 'magic_ball' else 0
- grid = [Path.generate_hgrid([0, length*cols], [0, length*lines], lines, 'm'),
- Path.generate_vgrid([0, length*cols], [corr_fist_line, length*lines-corr_last_line], 2*cols, 'm')]
-
- vgrid_a = Path.generate_vgrid([0, length * cols], [0, length / 2], 2 * cols, 'v')
- vgrid_b = Path.list_add(vgrid_a, (0, (lines - 0.5) * length))
- if pattern_first_line == 'magic_ball' and pattern_last_line == 'magic_ball':
- grid[1] = [[vgrid_a[i], grid[1][i], vgrid_b[i]] if i % 2 == 0 else
- [vgrid_b[i], grid[1][i], vgrid_a[i]] for i in range(len(grid[1]))]
- elif pattern_first_line == 'magic_ball':
- grid[1] = [[vgrid_a[i], grid[1][i]] if i % 2 == 0 else
- [grid[1][i], vgrid_a[i]] for i in range(len(grid[1]))]
- elif pattern_last_line == 'magic_ball':
- grid[1] = [[grid[1][i], vgrid_b[i]] if i % 2 == 0 else
- [vgrid_b[i], grid[1][i]] for i in range(len(grid[1]))]
-
- # create generic valley Path lines, one pointing up and other pointing down
- valley_types = [Path([(i * length / 2, (1 - i % 2) * length / 2) for i in range(2 * cols + 1)], 'v'),
- Path([( i*length/2, (i % 2)*length/2) for i in range(2 * cols + 1)], 'v')]
-
- # define which lines must be of which type, according to parity and options
- senses = np.array([bool((i % 2+i)/2 % 2) for i in range(2*lines)])
- senses = 1*senses # converts bool array to 0's and 1's
- if phase_shift:
- senses = np.invert(senses)
- if pattern_first_line == "magic_ball":
- senses[0] = ~senses[0]
- if pattern_last_line == "magic_ball":
- senses[-1] = ~senses[-1]
- valleys = [valley_types[senses[i]] + (0, i * length / 2) for i in range(2*lines)]
-
- # convert first and last lines to mountains if magic_ball
- if pattern_first_line == "magic_ball":
- valleys[0].style = 'm'
- if pattern_last_line == "magic_ball":
- valleys[-1].style = 'm'
-
- # invert every two lines to minimize laser cutter movements
- for i in range(1, 2*lines, 2):
- valleys[i].invert()
-
- self.edge_points = [(0*length*cols, 0*length*lines), # top left
- (1*length*cols, 0*length*lines), # top right
- (1*length*cols, 1*length*lines), # bottom right
- (0*length*cols, 1*length*lines)] # bottom left
-
- self.path_tree = [grid, valleys, vertices]
-
-
-if __name__ == '__main__':
- Waterbomb().run()
\ No newline at end of file
diff --git a/OrigamiPatterns/__init__.py b/OrigamiPatterns/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/fablabchemnitz_origami_patterns_kresling.inx b/fablabchemnitz_origami_patterns_kresling.inx
deleted file mode 100644
index f8eaa1ca..00000000
--- a/fablabchemnitz_origami_patterns_kresling.inx
+++ /dev/null
@@ -1,92 +0,0 @@
-
-
- <_name>Origami Pattern - Kresling tower
- fablabchemnitz.de.origami_patterns.kresling_full
-
-
-
- <_option value="regular">Regular
- <_option value="mirrowed">Mirror odd cells
-
- <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
- 3
- 6
- <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
- 10.0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
-
-
-
-
- 0.5
- 0.5
- 60.0
-
-
-
- false
- 100
- <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
-
-
- true
- true
- 1
- 0.5
- 0.1
- 4278190335
-
-
- true
- true
- 1
- 0.25
- 0.1
- 65535
-
-
- true
- true
- false
- 1
- 0.25
- 0.1
- 255
-
-
- false
- 0.1
- 0.1
- 255
-
-
-
- all
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/fablabchemnitz_origami_patterns_pleat_circular.inx b/fablabchemnitz_origami_patterns_pleat_circular.inx
deleted file mode 100644
index 4a2eea9e..00000000
--- a/fablabchemnitz_origami_patterns_pleat_circular.inx
+++ /dev/null
@@ -1,67 +0,0 @@
-
-
- <_name>Origami Pattern - Circular
- fablabchemnitz.de.origami_patterns.pleat_circular
-
-
- 55.0
-
-
-
-
-
-
- 0.4
- 15
- <_param name="help" type="description" xml:space="preserve">------------------------------
- true
- <_param name="help" type="description" xml:space="preserve">To simulate with OrigamiSimulator, semicreases (or facet creases) must be added to properly simulate paper, and the circles must be approximated as polygons.
- 20
-
-
- true
- true
- 1
- 0.5
- 0.1
- 4278190335
-
-
- true
- true
- 1
- 0.25
- 0.1
- 65535
-
-
- true
- true
- false
- 1
- 0.25
- 0.1
- 255
-
-
- true
- false
- 1
- 0.25
- 0.1
- 4294902015
-
-
-
-
- all
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/fablabchemnitz_origami_patterns_pleat_hypar.inx b/fablabchemnitz_origami_patterns_pleat_hypar.inx
deleted file mode 100644
index 8b011ec8..00000000
--- a/fablabchemnitz_origami_patterns_pleat_hypar.inx
+++ /dev/null
@@ -1,78 +0,0 @@
-
-
- <_name>Origami Pattern - N-sided Hypar
- fablabchemnitz.de.origami_patterns.pleat_hypar
-
-
-
- <_option value="classic">Classic Hypar
- <_option value="asymmetric">Asymmetric triangulation
- <_option value="alternate_asymmetric">Alternating asymmetric triangulation
-
- 100.0
-
-
-
-
-
-
- 4
- 7
- false
- <_param name="help" type="description" xml:space="preserve">Implements Hypar (classical hyperbolic paraboloid approximate).
Classic Hypar is the easiest one to fold. However, it's not rigid foldable. More information in:
Demaine, E. D., Demaine, M. L., Hart, V., Price, G. N., & Tachi, T. (2011). (Non)Existence of Pleated Folds: How Paper Folds Between Creases. Graphs and Combinatorics, 27(3), 377–397. https://doi.org/10.1007/s00373-011-1025-2
-
-
-
- true
- true
- 1
- 0.5
- 0.1
- 4278190335
-
-
- true
- true
- 1
- 0.25
- 0.1
- 65535
-
-
- true
- false
- 1
- 0.25
- 0.1
- 4278255615
-
-
- true
- true
- false
- 1
- 0.25
- 0.1
- 255
-
-
- false
- 0.1
- 0.1
- 255
-
-
-
-
- all
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/fablabchemnitz_origami_patterns_template.inx b/fablabchemnitz_origami_patterns_template.inx
deleted file mode 100644
index 19e30b3d..00000000
--- a/fablabchemnitz_origami_patterns_template.inx
+++ /dev/null
@@ -1,90 +0,0 @@
-
-
- <_name>Origami Pattern - Template effect
- fablabchemnitz.de.origami_patterns.template
-
-
-
- <_option value="template1">Template pattern 1
- <_option value="template2">Template pattern 2
-
- 10.0
-
-
-
-
-
-
- 0
- <_param name="help" type="description" xml:space="preserve">The .inx file defines the bridge between Inkscape's interface and the python script.
-
-
-
- true
- true
- 1
- 0.5
- 0.1
- 4278190335
-
-
- true
- true
- 1
- 0.25
- 0.1
- 65535
-
-
- true
- true
- false
- 1
- 0.25
- 0.1
- 255
-
-
- true
- 0.1
- 0.1
- 255
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- all
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/fablabchemnitz_origami_patterns_waterbomb.inx b/fablabchemnitz_origami_patterns_waterbomb.inx
deleted file mode 100644
index f37123e0..00000000
--- a/fablabchemnitz_origami_patterns_waterbomb.inx
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
- <_name>Origami Pattern - Waterbomb
- fablabchemnitz.de.origami_patterns.magic_ball
-
-
-
- <_option value="waterbomb">Regular waterbomb
- <_option value="magic_ball">Magic ball
-
-
- <_option value="waterbomb">Regular waterbomb
- <_option value="magic_ball">Magic ball
-
- false
- <_param name="help" type="description" xml:space="preserve">------------------------------
- 8
- 16
- <_param name="help" type="description" xml:space="preserve">------------------------------
- 10.0
-
-
-
-
-
-
- <_param name="help" type="description" xml:space="preserve">"Waterbomb tessellation" creates a simple tessellation pattern repeating the Waterbomb base, with a half-step phase shift between each line.
The Magic ball is a different design that inverts both the upper half of the first line and the bottom half of the last line.
-
-
-
- true
- true
- 1
- 0.5
- 0.1
- 4278190335
-
-
- true
- true
- 1
- 0.25
- 0.1
- 65535
-
-
- true
- true
- false
- 1
- 0.25
- 0.1
- 255
-
-
- false
- 0.1
- 0.1
- 255
-
-
-
- all
-
-
-
-
-
-
-
-
\ No newline at end of file