diff --git a/extensions/OrigamiPatterns/Hypar.py b/extensions/OrigamiPatterns/Hypar.py
new file mode 100644
index 00000000..699b563d
--- /dev/null
+++ b/extensions/OrigamiPatterns/Hypar.py
@@ -0,0 +1,112 @@
+#! /usr/bin/env python3
+
+import numpy as np
+from math import pi, tan, sqrt, sin, cos
+import inkex
+from Path import Path
+from Pattern import Pattern
+
+class Hypar(Pattern):
+ def __init__(self):
+ Pattern.__init__(self) # Must be called in order to parse common options
+ self.add_argument("-p", "--pattern", default="template1", help="Origami pattern")
+ self.add_argument("--radius", type=float, default=10.0, help="Radius of tower (mm)")
+ self.add_argument("--sides", type=int, default=4, help="Number of polygon sides")
+ self.add_argument("--rings", type=int, default=7, help="Number of rings")
+ self.add_argument("--simplify_center", type=inkex.Boolean, default=0, help="Simplify center")
+
+ def generate_path_tree(self):
+ """ Specialized path generation for your origami pattern
+ """
+ # retrieve saved parameters
+ unit_factor = self.calc_unit_factor()
+ vertex_radius = self.options.vertex_radius * unit_factor
+ pattern = self.options.pattern
+ radius = self.options.radius * unit_factor
+ sides = self.options.sides
+ rings = self.options.rings
+ simplify_center = self.options.simplify_center
+ sin_ = sin(pi / float(sides))
+ a = radius*sin_ # half of length of polygon side
+ H = radius*sqrt(1 - sin_**2)
+
+ polygon = Path.generate_polygon(sides, radius, 'e')
+
+ # # OLD diagonals generation with universal creases
+ # diagonals = []
+ # for i in range(sides):
+ # diagonals.append(Path([(0, 0), polygon.points[i]], 'u'))
+ # points = [(x, y) for x, y in polygon.points]
+ # diagonals = diagonals + [Path.generate_separated_paths(points, 'm')]
+
+ # # modify center if needed
+ # if simplify_center:
+ # for i in range(sides):
+ # if i % 2 == 0:
+ # p2 = diagonals[i].points[1]
+ # diagonals[i].points[0] = (1. / (rings + 1) * p2[0], 1. / (rings + 1) * p2[1])
+
+ # separate generic closed ring to create edges
+ self.edge_points = polygon.points
+
+ # vertex and diagonal lines creation
+ vertex_line = []
+ diagonal_line = []
+ for i in range(1, rings + 2):
+ y1 = a * (float(i - 1) / (rings + 1.))
+ x1 = H * float(i - 1) / (rings + 1.)
+ y2 = a * (float(i) / (rings + 1.))
+ x2 = H * float(i) / (rings + 1.)
+ vertex_line.append((Path((x2, y2), style='p', radius=vertex_radius)))
+ diagonal_line.append((Path([(x1, y1), (x2, y2)], style='m' if i % 2 else 'v')))
+
+ # rotation of vertices and diagonals for completing the drawing
+ diagonals = []
+ vertices = [Path((0, 0), style='p', radius=vertex_radius)]
+ for i in range(sides):
+ vertices = vertices+Path.list_rotate(vertex_line, i * 2 * pi / float(sides))
+ diagonals = diagonals+[Path.list_rotate(diagonal_line, i * 2 * pi / float(sides))]
+
+ # modify center if needed
+ if simplify_center:
+ for i in range(sides):
+ if i % 2 == 0:
+ del diagonals[i][0]
+
+ # inkex.debug(len(diagonals))
+ # inkex.debug(len(diagonals[0]))
+ # diagonals = diagonals + diagonal
+
+ # scale generic closed ring to create inner rings
+ inner_rings = []
+ for i in range(rings + 1):
+ inner_rings.append(polygon * (float(i)/(rings+1)))
+ inner_rings[i].style = 'v' if i % 2 else 'm'
+
+ # create points for zig zag pattern
+ zig_zags = []
+ if pattern != "classic":
+ zig_zag = []
+ for i in range(1, rings + 1):
+ y_out = a * ((i + 1.) / (rings + 1.))
+ y_in = a * (float(i) / (rings + 1.))
+ x_out = H * (i + 1.) / (rings + 1.)
+ x_in = H * float(i) / (rings + 1.)
+
+ if pattern == "alternate_asymmetric" and i % 2:
+ zig_zag.append(Path([(x_in, -y_in), (x_out, +y_out)], style='u'))
+ else:
+ zig_zag.append(Path([(x_in, +y_in), (x_out, -y_out)], style='u'))
+
+ # reflect zig zag pattern to create all sides
+ zig_zags.append(zig_zag)
+ for i in range(sides - 1):
+ points = diagonals[i][0].points
+ zig_zags.append(Path.list_reflect(zig_zags[i], points[0], points[1]))
+
+ self.translate = (radius, radius)
+ self.path_tree = [diagonals, zig_zags, inner_rings, vertices]
+
+# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
+if __name__ == '__main__':
+ Hypar().run()
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Kresling.py b/extensions/OrigamiPatterns/Kresling.py
new file mode 100644
index 00000000..6c3ef0d1
--- /dev/null
+++ b/extensions/OrigamiPatterns/Kresling.py
@@ -0,0 +1,154 @@
+#! /usr/bin/env python3
+
+from math import pi, sin, cos, tan, acos, sqrt
+import inkex
+from Path import Path
+from Pattern import Pattern
+
+class Kresling(Pattern):
+ def __init__(self):
+ Pattern.__init__(self) # Must be called in order to parse common options
+ self.add_argument("-p", "--pattern", default="kresling", help="Origami pattern")
+ self.add_argument("--lines", type=int, default=1, help="Number of lines")
+ self.add_argument("--sides", type=int, default=3, help="Number of polygon sides")
+ self.add_argument("--add_attachment", type=inkex.Boolean, default=False, help="Add attachment?")
+ self.add_argument("--attachment_percentage", type=float, default=100., help="Length percentage of extra facet")
+ self.add_argument("--mirror_cells", type=inkex.Boolean, default=False, help="Mirror odd cells?")
+
+ @staticmethod
+ def generate_kresling_zigzag(sides, radius, angle_ratio, add_attachment):
+
+ theta = (pi / 2.) * (1 - 2. / sides)
+ l = 2. * radius * cos(theta * (1. - angle_ratio))
+ a = 2. * radius * sin(pi / sides)
+ # b = sqrt(a * a + l * l - 2 * a * l * cos(angle_ratio * theta))
+ # phi = abs(acos((l * l + b * b - a * a) / (2 * l * b)))
+ # gamma = pi / 2 - angle_ratio * theta - phi
+ dy = l * sin(theta * angle_ratio)
+ dx = l * cos(theta * angle_ratio) - a
+
+ points = []
+ styles = []
+
+ for i in range(sides):
+ points.append((i * a, 0))
+ points.append(((i + 1) * a + dx, -dy))
+ styles.append('v')
+ if i != sides - 1:
+ styles.append('m')
+ elif add_attachment:
+ points.append((sides * a, 0))
+ styles.append('m')
+
+ path = Path.generate_separated_paths(points, styles)
+ return path
+
+ def generate_path_tree(self):
+ """ Specialized path generation for Waterbomb tesselation pattern
+ """
+ unit_factor = self.calc_unit_factor()
+ vertex_radius = self.options.vertex_radius * unit_factor
+ lines = self.options.lines
+ sides = self.options.sides
+ radius = self.options.radius * unit_factor
+ angle_ratio = self.options.angle_ratio
+ mirror_cells = self.options.mirror_cells
+
+ theta = (pi/2.)*(1 - 2./sides)
+ l = 2.*radius*cos(theta*(1.-angle_ratio))
+ a = 2.*radius*sin(pi/sides)
+ # b = sqrt(a*a + l*l - 2*a*l*cos(angle_ratio*theta))
+ # phi = abs(acos((l*l + b*b - a*a)/(2*l*b)))
+ # gamma = pi/2 - angle_ratio*theta - phi
+ # dy = b*cos(gamma)
+ # dx = b*sin(gamma)
+ dy = l * sin(theta * angle_ratio)
+ dx = l * cos(theta * angle_ratio) - a
+
+ add_attachment = self.options.add_attachment
+ attachment_percentage = self.options.attachment_percentage/100.
+ attachment_height = a*(attachment_percentage-1)*tan(angle_ratio*theta)
+
+ vertices = []
+ for i in range(sides + 1):
+ for j in range(lines + 1):
+ if mirror_cells:
+ vertices.append(Path((dx*((lines - j)%2) + a*i, dy*j), style='p', radius=vertex_radius))
+ else:
+ vertices.append(Path((dx*(lines - j) + a*i, dy*j), style='p', radius=vertex_radius))
+
+ # create a horizontal grid, then offset each line according to angle
+ grid_h = Path.generate_hgrid([0, a * sides], [0, dy * lines], lines, 'm')
+
+
+ if not mirror_cells:
+ # shift every mountain line of the grid to the right by increasing amounts
+ grid_h = Path.list_add(grid_h, [(i * dx, 0) for i in range(lines - 1, 0, -1)])
+ else:
+ # shift every OTHER mountain line of the grid a bit to the right
+ grid_h = Path.list_add(grid_h, [((i%2)*dx, 0) for i in range(lines-1, 0, -1)])
+ if add_attachment:
+ for i in range(lines%2, lines-1, 2):
+ # hacky solution, changes length of every other mountain line
+ grid_h[i].points[1-i%2] = (grid_h[i].points[1-i%2][0] + a*attachment_percentage, grid_h[i].points[1-i%2][1])
+
+
+ # create MV zigzag for Kresling pattern
+ zigzag = Kresling.generate_kresling_zigzag(sides, radius, angle_ratio, add_attachment)
+ zigzags = []
+
+ # duplicate zigzag pattern for desired number of cells
+ if not mirror_cells:
+ for i in range(lines):
+ zigzags.append(Path.list_add(zigzag, (i * dx, (lines - i) * dy)))
+ else:
+ zigzag_mirror = Path.list_reflect(zigzag, (0, lines * dy / 2), (dx, lines * dy / 2))
+ for i in range(lines):
+ if i % 2 == 1:
+ zigzags.append(Path.list_add(zigzag_mirror, (0, -(lines - i + (lines-1)%2) * dy)))
+ else:
+ zigzags.append(Path.list_add(zigzag, (0, (lines - i) * dy)))
+
+ # create edge strokes
+ if not mirror_cells:
+ self.edge_points = [
+ (a * sides , dy * lines), # bottom right
+ (0 , dy * lines), # bottom left
+ (dx * lines , 0), # top left
+ (dx * lines + a * sides, 0)] # top right
+
+ if add_attachment:
+ for i in range(lines):
+ x = dx * (lines - i) + a * (sides + attachment_percentage)
+ self.edge_points.append((x, dy * i))
+ self.edge_points.append((x, dy * i - attachment_height))
+ if i != lines - 1:
+ self.edge_points.append((x-dx-a*attachment_percentage, dy * (i + 1)))
+ pass
+
+ else:
+ self.edge_points = [(a * sides + (lines % 2)*dx, 0)]
+
+ for i in range(lines+1):
+ self.edge_points.append([((lines+i) % 2)*dx, dy*i])
+
+ self.edge_points.append([a * sides + ((lines+i) %2)*dx, lines*dy])
+
+ if add_attachment:
+ for i in range(lines + 1):
+
+ if not i%2 == 0:
+ self.edge_points.append([a*sides + (i%2)*(dx+a*attachment_percentage), dy*(lines - i) - (i%2)*attachment_height])
+ self.edge_points.append([a*sides + (i%2)*(dx+a*attachment_percentage), dy*(lines - i)])
+ if (i != lines):
+ self.edge_points.append([a * sides + (i % 2) * (dx + a * attachment_percentage), dy * (lines - i) + (i % 2) * attachment_height])
+ else:
+ self.edge_points.append([a * sides + (i % 2) * (dx + a * attachment_percentage), dy * (lines - i)])
+ else:
+ for i in range(lines + 1):
+ self.edge_points.append([a*sides + (i%2)*dx, dy*(lines - i)])
+
+ self.path_tree = [grid_h, zigzags, vertices]
+
+if __name__ == '__main__':
+ Kresling().run()
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Kresling_full.py b/extensions/OrigamiPatterns/Kresling_full.py
new file mode 100644
index 00000000..5d55d004
--- /dev/null
+++ b/extensions/OrigamiPatterns/Kresling_full.py
@@ -0,0 +1,89 @@
+#! /usr/bin/env python3
+
+from math import sin, cos, sqrt, asin, pi, ceil
+import inkex
+from Path import Path
+from Pattern import Pattern
+from Kresling import Kresling
+
+
+class Kresling_Full(Kresling):
+
+ def __init__(self):
+ """ Constructor
+ """
+ Kresling.__init__(self) # Must be called in order to parse common options
+
+ self.add_argument('--measure_value', type=float, default=10.0, help="Length")
+ self.add_argument('--measure_type', default=60, help="Type of length")
+ self.add_argument('--parameter_type', default=60, help="Type of parameter")
+ self.add_argument('--radial_ratio', type=float, default=0.5, help="Radial ratio")
+ self.add_argument('--angle_ratio', type=float, default=0.5, help="Anle ratio")
+ self.add_argument('--lambdatheta', type=float, default=45, help="lambdatheta")
+
+ def generate_path_tree(self):
+ """ Convert radial to angular ratio, then call regular Kresling constructor
+ """
+ n = self.options.sides
+ theta = pi*(n-2)/(2*n)
+ # define ratio parameter
+ parameter = self.options.parameter_type
+ if parameter == 'radial_ratio':
+ radial_ratio = self.options.radial_ratio
+ max_radial_ratio = sin((pi/4)*(1. - 2./n))
+ if radial_ratio > max_radial_ratio:
+ inkex.errormsg(_("For polygon of {} sides, the maximal radial ratio is = {}".format(n, max_radial_ratio)))
+ radial_ratio = max_radial_ratio
+ self.options.angle_ratio = 1 - 2*n*asin(radial_ratio)/((n-2)*pi)
+
+ elif parameter == 'lambdatheta':
+ lambdatheta = self.options.lambdatheta
+ angle_min = 45. * (1 - 2. / n)
+ angle_max = 2 * angle_min
+ if lambdatheta < angle_min:
+ inkex.errormsg(_(
+ "For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
+ n, angle_min, angle_max, angle_min)))
+ lambdatheta = angle_min
+ elif lambdatheta > angle_max:
+ inkex.errormsg(_(
+ "For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
+ n, angle_min, angle_max, angle_max)))
+ lambdatheta = angle_max
+ self.options.angle_ratio = lambdatheta * n / (90. * (n - 2.))
+
+
+ # define some length
+ mtype = self.options.measure_type
+ mvalue = self.options.measure_value
+ angle_ratio = self.options.angle_ratio
+ if mtype == 'a':
+ radius = 0.5*mvalue / (sin(pi/n))
+ if mtype == 'b':
+ A = cos(theta*(1-angle_ratio))
+ B = sin(pi/n)
+ C = cos(theta*angle_ratio)
+ radius = 0.5*mvalue / sqrt(A**2 + B**2 - 2*A*B*C)
+ elif mtype == 'l':
+ radius = 0.5*mvalue/cos(theta*(1-angle_ratio))
+ elif mtype == 'radius_external':
+ radius = mvalue
+ elif mtype == 'radius_internal':
+ radius = mvalue/(sin(theta*(1-angle_ratio)))
+ elif mtype == 'diameter_external':
+ radius = 0.5*mvalue
+ elif mtype == 'diameter_internal':
+ radius = 0.5*mvalue/sin(theta*(1-angle_ratio))
+
+ # inkex.errormsg(_("Value = {}, Mode = {}, Radius = {}".format(mvalue, mtype, radius)))
+
+ if self.options.pattern == 'mirrowed':
+ self.options.mirror_cells = True
+ else:
+ self.options.mirror_cells = False
+ self.options.radius = radius
+
+ Kresling.generate_path_tree(self)
+
+if __name__ == '__main__':
+ Kresling_Full().run()
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Path.py b/extensions/OrigamiPatterns/Path.py
new file mode 100644
index 00000000..ceab873c
--- /dev/null
+++ b/extensions/OrigamiPatterns/Path.py
@@ -0,0 +1,466 @@
+#! /usr/bin/env python3
+
+import inkex
+from lxml import etree
+from math import sin, cos, pi
+
+class Path:
+ """ Class that defines an svg stroke to be drawn in Inkscape
+
+ Attributes
+ ---------
+ points: tuple or list of tuples
+ Points defining stroke lines.
+ style: str
+ Single character defining style of stroke. Default values are:
+ 'm' for mountain creases
+ 'v' for valley creases
+ 'e' for edge borders
+ Extra possible values:
+ 'u' for universal creases
+ 's' for semicreases
+ 'c' for kirigami cuts
+ closed: bool
+ Tells if desired path should contain a last stroke from the last point to the first point, closing the path
+ radius: float
+ If only one point is given, it's assumed to be a circle and radius sets the radius
+
+
+ Methods
+ ---------
+ invert(self)
+ Inverts path
+
+ Overloaded Operators
+ ---------
+ __add__(self, offsets)
+ Adding a tuple to a Path returns a new path with all points having an offset defined by the tuple
+
+ __mul__(self, transform)
+ Define multiplication of a Path to a vector in complex exponential representation
+
+
+ Static Methods
+ ---------
+ draw_paths_recursively(path_tree, group, styles_dict)
+ Draws strokes defined on "path_tree" to "group". Styles dict maps style of path_tree element to the definition
+ of the style. Ex.:
+ if path_tree[i].style = 'm', styles_dict must have an element 'm'.
+
+ generate_hgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False)
+ Generate list of Path instances, in which each Path is a stroke defining a horizontal grid dividing the space
+ xlims * ylims nb_of_divisions times.
+
+ generate_vgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False)
+ Generate list of Path instances, in which each Path is a stroke defining a vertical grid dividing the space
+ xlims * ylims nb_of_divisions times.
+
+ generate_separated_paths(cls, points, styles, closed=False)
+ Generate list of Path instances, in which each Path is the stroke between each two point tuples, in case each
+ stroke must be handled separately
+
+ reflect(cls, path, p1, p2)
+ Reflects each point of path on line defined by two points and return new Path instance with new reflected points
+
+ list_reflect(cls, paths, p1, p2)
+ Generate list of new Path instances, rotation each path by transform
+
+ list_rotate(cls, paths, theta, translation=(0, 0))
+ Generate list of new Path instances, rotation each path by transform
+
+ list_add(cls, paths, offsets)
+ Generate list of new Path instances, adding a different tuple for each list
+
+
+ """
+
+ def __init__(self, points, style, closed=False, invert=False, radius=0.1, separated=False):
+ """ Constructor
+
+ Parameters
+ ---------
+ points: list of 2D tuples
+ stroke will connect all points
+ style: str
+ Single character defining style of stroke. For use with the OrigamiPatterns class (probably the only
+ project that will ever use this file) the default values are:
+ 'm' for mountain creases
+ 'v' for valley creases
+ 'e' for edge borders
+ closed: bool
+ if true, last point will be connected to first point at the end
+ invert: bool
+ if true, stroke will start at the last point and go all the way to the first one
+ """
+ if type(points) == list and len(points) != 1:
+ self.type = 'linear'
+ if invert:
+ self.points = points[::-1]
+ else:
+ self.points = points
+
+ elif (type(points) == list and len(points) == 1):
+ self.type = 'circular'
+ self.points = points
+ self.radius = radius
+
+ elif (type(points) == tuple and len(points) == 2):
+ self.type = 'circular'
+ self.points = [points]
+ self.radius = radius
+
+ else:
+ raise TypeError("Points must be tuple of length 2 (for a circle) or a list of tuples of length 2 each")
+
+ self.style = style
+ self.closed = closed
+
+ def invert(self):
+ """ Inverts path
+ """
+ self.points = self.points[::-1]
+
+ """
+ Draw path recursively
+ - Static method
+ - Draws strokes defined on "path_tree" to "group"
+ - Inputs:
+ -- path_tree [nested list] of Path instances
+ -- group [etree.SubElement]
+ -- styles_dict [dict] containing all styles for path_tree
+ """
+ @staticmethod
+ def draw_paths_recursively(path_tree, group, styles_dict):
+ """ Static method, draw list of Path instances recursively
+ """
+ for subpath in path_tree:
+ if type(subpath) == list:
+ if len(subpath) == 1:
+ subgroup = group
+ else:
+ subgroup = etree.SubElement(group, 'g')
+ Path.draw_paths_recursively(subpath, subgroup, styles_dict)
+ else:
+ if styles_dict[subpath.style]['draw']:
+ if subpath.type == 'linear':
+
+ points = subpath.points
+ path = 'M{},{} '.format(*points[0])
+ for i in range(1, len(points)):
+ path = path + 'L{},{} '.format(*points[i])
+ if subpath.closed:
+ path = path + 'L{},{} Z'.format(*points[0])
+
+ attribs = {'style': str(inkex.Style(styles_dict[subpath.style])), 'd': path}
+ etree.SubElement(group, inkex.addNS('path', 'svg'), attribs)
+ else:
+ attribs = {'style': str(inkex.Style(styles_dict[subpath.style])),
+ 'cx': str(subpath.points[0][0]), 'cy': str(subpath.points[0][1]),
+ 'r': str(subpath.radius)}
+ etree.SubElement(group, inkex.addNS('circle', 'svg'), attribs)
+
+ @classmethod
+ def generate_hgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False):
+ """ Generate list of Path instances, in which each Path is a stroke defining
+ a horizontal grid dividing the space xlims * ylims nb_of_divisions times.
+
+ All lines are alternated, to minimize Laser Cutter unnecessary movements
+
+ Parameters
+ ---------
+ xlims: tuple
+ Defines x_min and x_max for space that must be divided.
+ ylims: tuple
+ Defines y_min and y_max for space that must be divided.
+ nb_of_divisions: int
+ Defines how many times it should be divided.
+ style: str
+ Single character defining style of stroke.
+ include_edge: bool
+ Defines if edge should be drawn or not.
+
+ Returns
+ ---------
+ paths: list of Path instances
+ """
+ rect_len = (ylims[1] - ylims[0])/nb_of_divisions
+ hgrid = []
+ for i in range(1 - include_edge, nb_of_divisions + include_edge):
+ hgrid.append(cls([(xlims[0], ylims[0]+i*rect_len),
+ (xlims[1], ylims[0]+i*rect_len)],
+ style=style, invert=i % 2 == 0))
+ return hgrid
+
+ @classmethod
+ def generate_vgrid(cls, xlims, ylims, nb_of_divisions, style, include_edge=False):
+ """ Generate list of Path instances, in which each Path is a stroke defining
+ a vertical grid dividing the space xlims * ylims nb_of_divisions times.
+
+ All lines are alternated, to minimize Laser Cutter unnecessary movements
+
+ Parameters
+ ---------
+ -> refer to generate_hgrid
+
+ Returns
+ ---------
+ paths: list of Path instances
+ """
+ rect_len = (xlims[1] - xlims[0])/nb_of_divisions
+ vgrid = []
+ for i in range(1 - include_edge, nb_of_divisions + include_edge):
+ vgrid.append(cls([(xlims[0]+i*rect_len, ylims[0]),
+ (xlims[0]+i*rect_len, ylims[1])],
+ style=style, invert=i % 2 == 0))
+ return vgrid
+
+ @classmethod
+ def generate_polygon(cls, sides, radius, style, center=(0, 0)):
+ points = []
+ for i in range(sides):
+ points.append((radius * cos((1 + i * 2) * pi / sides),
+ radius * sin((1 + i * 2) * pi / sides)))
+ return Path(points, style, closed=True)
+
+ @classmethod
+ def generate_separated_paths(cls, points, styles, closed=False):
+ """ Generate list of Path instances, in which each Path is the stroke
+ between each two point tuples, in case each stroke must be handled separately.
+
+ Returns
+ ---------
+ paths: list
+ list of Path instances
+ """
+ paths = []
+ if type(styles) == str:
+ styles = [styles] * (len(points) - 1 + int(closed))
+ elif len(styles) != len(points) - 1 + int(closed):
+ raise TypeError("Number of paths and styles don't match")
+ for i in range(len(points) - 1 + int(closed)):
+ j = (i+1)%len(points)
+ paths.append(cls([points[i], points[j]],
+ styles[i]))
+ return paths
+
+ def __add__(self, offsets):
+ """ " + " operator overload.
+ Adding a tuple to a Path returns a new path with all points having an offset
+ defined by the tuple
+ """
+ if type(offsets) == list:
+ if len(offsets) != 1 or len(offsets) != len(self.points):
+ raise TypeError("Paths can only be added by a tuple of a list of N tuples, "
+ "where N is the same number of points")
+
+ elif type(offsets) != tuple:
+ raise TypeError("Paths can only be added by tuples")
+ else:
+ offsets = [offsets] * len(self.points)
+
+ # if type(self.points) == list:
+ points_new = []
+ for point, offset in zip(self.points, offsets):
+ points_new.append((point[0]+offset[0],
+ point[1]+offset[1]))
+
+ if self.type == 'circular':
+ radius = self.radius
+ else:
+ radius = 0.2
+
+ # if self.type == 'circular' else 0.1
+
+ return Path(points_new, self.style, self.closed, radius=radius)
+
+ @classmethod
+ def list_add(cls, paths, offsets):
+ """ Generate list of new Path instances, adding a different tuple for each list
+
+ Parameters
+ ---------
+ paths: Path or list
+ list of N Path instances
+ offsets: tuple or list
+ list of N tuples
+
+ Returns
+ ---------
+ paths_new: list
+ list of N Path instances
+ """
+ if type(paths) == Path and type(offsets) == tuple:
+ paths = [paths]
+ offsets = [offsets]
+ elif type(paths) == list and type(offsets) == tuple:
+ offsets = [offsets] * len(paths)
+ elif type(paths) == Path and type(offsets) == list:
+ paths = [paths] * len(offsets)
+ elif type(paths) == list and type(offsets) == list:
+ if len(paths) == 1:
+ paths = [paths[0]] * len(offsets)
+ elif len(offsets) == 1:
+ offsets = [offsets[0]] * len(paths)
+ elif len(offsets) != len(paths):
+ raise TypeError("List of paths and list of tuples must have same length. {} paths and {} offsets "
+ " where given".format(len(paths), len(offsets)))
+ else:
+ pass
+
+ paths_new = []
+ for path, offset in zip(paths, offsets):
+ paths_new.append(path+offset)
+
+ return paths_new
+
+ def __mul__(self, transform):
+ """ " * " operator overload.
+ Define multiplication of a Path to a vector in complex exponential representation
+
+ Parameters
+ ---------
+ transform: float of tuple of length 2 or 4
+ if float, transform represents magnitude
+ Example: path * 3
+ if tuple length 2, transform[0] represents magnitude and transform[1] represents angle of rotation
+ Example: path * (3, pi)
+ if tuple length 4, transform[2],transform[3] define a different axis of rotation
+ Example: path * (3, pi, 1, 1)
+ """
+ points_new = []
+
+ # "temporary" (probably permanent) compatibility hack
+ try:
+ long_ = long
+ except:
+ long_ = int
+
+ if isinstance(transform, (int, long_, float)):
+ for p in self.points:
+ points_new.append((transform * p[0],
+ transform * p[1]))
+
+ elif isinstance(transform, (list, tuple)):
+ if len(transform) == 2:
+ u = transform[0]*cos(transform[1])
+ v = transform[0]*sin(transform[1])
+ x_, y_ = 0, 0
+ elif len(transform) == 4:
+ u = transform[0]*cos(transform[1])
+ v = transform[0]*sin(transform[1])
+ x_, y_ = transform[2:]
+ else:
+ raise IndexError('Paths can only be multiplied by a number or a tuple/list of length 2 or 4')
+
+ for p in self.points:
+ x, y = p[0]-x_, p[1]-y_
+ points_new.append((x_ + x * u - y * v,
+ y_ + x * v + y * u))
+ else:
+ raise TypeError('Paths can only be multiplied by a number or a tuple/list of length 2 or 4')
+
+ if self.type == 'circular':
+ radius = self.radius
+ else:
+ radius = 0.2
+
+ return Path(points_new, self.style, self.closed, radius=radius)
+
+ @classmethod
+ def list_rotate(cls, paths, theta, translation=(0, 0)):
+ """ Generate list of new Path instances, rotation each path by transform
+
+ Parameters
+ ---------
+ paths: Path or list
+ list of N Path instances
+ theta: float (radians)
+ angle of rotation
+ translation: tuple or list 2
+ axis of rotation
+
+ Returns
+ ---------
+ paths_new: list
+ list of N Path instances
+ """
+ if len(translation) != 2:
+ TypeError("Translation must have length 2")
+
+ if type(paths) != list:
+ paths = [paths]
+
+ paths_new = []
+ for path in paths:
+ paths_new.append(path*(1, theta, translation[0], translation[1]))
+
+ if len(paths_new) == 1:
+ paths_new = paths_new[0]
+ return paths_new
+
+ # TODO:
+ # Apparently it's not working properly, must be debugged and tested
+ @classmethod
+ def reflect(cls, path, p1, p2):
+ """ Reflects each point of path on line defined by two points and return new Path instance with new reflected points
+
+ Parameters
+ ---------
+ path: Path
+ p1: tuple or list of size 2
+ p2: tuple or list of size 2
+
+ Returns
+ ---------
+ path_reflected: Path
+ """
+
+ (x1, y1) = p1
+ (x2, y2) = p2
+
+ if x1 == x2 and y1 == y2:
+ ValueError("Duplicate points don't define a line")
+ elif x1 == x2:
+ t_x = [-1, 0, 2*x1, 1]
+ t_y = [0, 1, 0, 1]
+ else:
+ m = (y2 - y1)/(x2 - x1)
+ t = y1 - m*x1
+ t_x = [1 - m**2, 2*m, -2*m*t, m**2 + 1]
+ t_y = [2*m, m**2 - 1, +2*t, m**2 + 1]
+
+ points_new = []
+ for p in path.points:
+ x_ = (t_x[0]*p[0] + t_x[1]*p[1] + t_x[2]) / t_x[3]
+ y_ = (t_y[0]*p[0] + t_y[1]*p[1] + t_y[2]) / t_y[3]
+ points_new.append((x_, y_))
+
+ return Path(points_new, path.style, path.closed)
+
+ # TODO:
+ # Apparently it's not working properly, must be debugged and tested
+ @classmethod
+ def list_reflect(cls, paths, p1, p2):
+ """ Generate list of new Path instances, rotation each path by transform
+
+ Parameters
+ ---------
+ paths: Path or list
+ list of N Path instances
+ p1: tuple or list of size 2
+ p2: tuple or list of size 2
+
+ Returns
+ ---------
+ paths_new: list
+ list of N Path instances
+ """
+
+ if type(paths) == Path:
+ paths = [paths]
+
+ paths_new = []
+ for path in paths:
+ paths_new.append(Path.reflect(path, p1, p2))
+
+ return paths_new
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Pattern.py b/extensions/OrigamiPatterns/Pattern.py
new file mode 100644
index 00000000..3dc8c257
--- /dev/null
+++ b/extensions/OrigamiPatterns/Pattern.py
@@ -0,0 +1,249 @@
+#! /usr/bin/env python3
+
+import os
+from abc import abstractmethod
+from lxml import etree
+from Path import Path, inkex
+
+class Pattern(inkex.Effect):
+ @abstractmethod
+ def generate_path_tree(self):
+ """ Generate nested list of Path instances
+ Abstract method, must be defined in all child classes
+ """
+ pass
+
+ def __init__(self):
+ inkex.Effect.__init__(self) # initialize the super class
+ self.add_argument = self.arg_parser.add_argument
+ self.add_argument("-u", "--units", default='mm', help="Units this dialog is using")
+
+ # self.add_argument("-a", "--add_attachment", type=inkex.Boolean, default=False, help="command line help")
+ # self.add_argument("", "--accuracy", type=int, default=0, help="command line help")
+
+ # --------------------------------------------------------------------------------------------------------------
+ # mountain options
+ self.add_argument('-m', '--mountain_stroke_color', default=4278190335, help='The mountain creases color.')
+ self.add_argument('--mountain_stroke_width', type=float, default=0.1, help='Width of mountain strokes.')
+ self.add_argument('--mountain_dashes_len', type=float, default=1.0, help='Mountain dash + gap length.')
+ self.add_argument('--mountain_dashes_duty', type=float, default=0.5, help='Mountain dash duty cycle.')
+ self.add_argument('--mountain_dashes_bool', type=inkex.Boolean, default=True, help='Dashed strokes?')
+ self.add_argument('--mountain_bool', type=inkex.Boolean, default=True, help='Draw mountains?')
+
+ # --------------------------------------------------------------------------------------------------------------
+ # valley options
+ self.add_argument('-v', '--valley_stroke_color', default=65535, help='The valley creases color.')
+ self.add_argument('--valley_stroke_width', type=float, default=0.1, help='Width of valley strokes.')
+ self.add_argument('--valley_dashes_len', type=float, default=1.0, help='Valley dash + gap length.')
+ self.add_argument('--valley_dashes_duty', type=float, default=0.25, help='Valley dash duty cycle.')
+ self.add_argument('--valley_dashes_bool', type=inkex.Boolean, default=True, help='Dashed strokes?')
+ self.add_argument('--valley_bool', type=inkex.Boolean, default=True, help='Draw valleys?')
+
+ # --------------------------------------------------------------------------------------------------------------
+ # edge options
+ self.add_argument('-e', '--edge_stroke_color', default=255, help='The mountain creases color.')
+ self.add_argument('--edge_stroke_width', type=float, default=0.1, help='Width of edge strokes.')
+ self.add_argument('--edge_dashes_len', type=float, default=1.0, help='Edge dash + gap length.')
+ self.add_argument('--edge_dashes_duty', type=float, default=0.25, help='Edge dash duty cycle.')
+ self.add_argument('--edge_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
+ self.add_argument('--edge_bool', type=inkex.Boolean, default=True, help='Draw edges?')
+ self.add_argument('--edge_single_path', type=inkex.Boolean, default=True, help='Edges as single path?')
+
+ # --------------------------------------------------------------------------------------------------------------
+ # universal crease options
+ self.add_argument('--universal_stroke_color', default=4278255615, help='The universal creases color.')
+ self.add_argument('--universal_stroke_width', type=float, default=0.1, help='Width of universal strokes.')
+ self.add_argument('--universal_dashes_len', type=float, default=1.0, help='Universal dash + gap length.')
+ self.add_argument('--universal_dashes_duty', type=float, default=0.25, help='Universal dash duty cycle.')
+ self.add_argument('--universal_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
+ self.add_argument('--universal_bool', type=inkex.Boolean, default=True, help='Draw universal creases?')
+
+ # --------------------------------------------------------------------------------------------------------------
+ # semicrease options
+ self.add_argument('--semicrease_stroke_color', default=4294902015, help='The semicrease creases color.')
+ self.add_argument('--semicrease_stroke_width', type=float, default=0.1, help='Width of semicrease strokes.')
+ self.add_argument('--semicrease_dashes_len', type=float, default=1.0, help='Semicrease dash + gap length.')
+ self.add_argument('--semicrease_dashes_duty', type=float,default=0.25, help='Semicrease dash duty cycle.')
+ self.add_argument('--semicrease_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
+ self.add_argument('--semicrease_bool', type=inkex.Boolean, default=True, help='Draw semicreases?')
+
+ # --------------------------------------------------------------------------------------------------------------
+ # cut options
+ self.add_argument('--cut_stroke_color', default=16711935, help='The cut creases color.')
+ self.add_argument('--cut_stroke_width', type=float, default=0.1, help='Width of cut strokes.')
+ self.add_argument('--cut_dashes_len', type=float, default=1.0, help='Cut dash + gap length.')
+ self.add_argument('--cut_dashes_duty', type=float, default=0.25, help='Cut dash duty cycle.')
+ self.add_argument('--cut_dashes_bool', type=inkex.Boolean, default=False, help='Dashed strokes?')
+ self.add_argument('--cut_bool', type=inkex.Boolean, default=True, help='Draw cuts?')
+
+ # --------------------------------------------------------------------------------------------------------------
+ # vertex options
+ self.add_argument('--vertex_stroke_color', default=255, help='Vertices\' color.')
+ self.add_argument('--vertex_stroke_width', type=float, default=0.1, help='Width of vertex strokes.')
+ self.add_argument('--vertex_radius', type=float, default=0.1, help='Radius of vertices.')
+ self.add_argument('--vertex_bool', type=inkex.Boolean, default=True, help='Draw vertices?')
+ # here so we can have tabs - but we do not use it directly - else error
+ self.add_argument('--active-tab', default='title', help="Active tab.")
+
+ self.path_tree = []
+ self.edge_points = []
+ self.translate = (0, 0)
+
+ def effect(self):
+ """ Main function, called when the extension is run.
+ """
+ # construct dictionary containing styles
+ self.create_styles_dict()
+
+ # get paths for selected origami pattern
+ self.generate_path_tree()
+
+ # ~ accuracy = self.options.accuracy
+ # ~ unit_factor = self.calc_unit_factor()
+ # what page are we on
+ # page_id = self.options.active_tab # sometimes wrong the very first time
+
+ # Translate according to translate attribute
+ g_attribs = {inkex.addNS('label', 'inkscape'): '{} Origami pattern'.format(self.options.pattern),
+ # inkex.addNS('transform-center-x','inkscape'): str(-bbox_center[0]),
+ # inkex.addNS('transform-center-y','inkscape'): str(-bbox_center[1]),
+ inkex.addNS('transform-center-x', 'inkscape'): str(0),
+ inkex.addNS('transform-center-y', 'inkscape'): str(0),
+ 'transform': 'translate(%s,%s)' % self.translate}
+
+ # add the group to the document's current layer
+ if type(self.path_tree) == list and len(self.path_tree) != 1:
+ self.topgroup = etree.SubElement(self.get_layer(), 'g', g_attribs)
+ else:
+ self.topgroup = self.get_layer()
+
+ if len(self.edge_points) == 0:
+ Path.draw_paths_recursively(self.path_tree, self.topgroup, self.styles_dict)
+ elif self.options.edge_single_path:
+ edges = Path(self.edge_points, 'e', closed=True)
+ Path.draw_paths_recursively(self.path_tree + [edges], self.topgroup, self.styles_dict)
+ else:
+ edges = Path.generate_separated_paths(self.edge_points, 'e', closed=True)
+ Path.draw_paths_recursively(self.path_tree + edges, self.topgroup, self.styles_dict)
+
+ # self.draw_paths_recursively(self.path_tree, self.topgroup, self.styles_dict)
+
+ # compatibility hack
+ def get_layer(self):
+ try:
+ return self.svg.get_current_layer() # new
+ except:
+ return self.current_layer # old
+
+ def create_styles_dict(self):
+ """ Get stroke style parameters and use them to create the styles dictionary, used for the Path generation
+ """
+ unit_factor = self.calc_unit_factor()
+
+ # define colour and stroke width
+ mountain_style = {'draw': self.options.mountain_bool,
+ 'stroke': self.get_color_string(self.options.mountain_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.mountain_stroke_width*unit_factor}
+
+ valley_style = {'draw': self.options.valley_bool,
+ 'stroke': self.get_color_string(self.options.valley_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.valley_stroke_width*unit_factor}
+
+ universal_style = {'draw': self.options.universal_bool,
+ 'stroke': self.get_color_string(self.options.universal_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.universal_stroke_width*unit_factor}
+
+ semicrease_style = {'draw': self.options.semicrease_bool,
+ 'stroke': self.get_color_string(self.options.semicrease_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.semicrease_stroke_width*unit_factor}
+
+ cut_style = {'draw': self.options.cut_bool,
+ 'stroke': self.get_color_string(self.options.cut_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.cut_stroke_width*unit_factor}
+
+ edge_style = {'draw': self.options.edge_bool,
+ 'stroke': self.get_color_string(self.options.edge_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.edge_stroke_width*unit_factor}
+
+ vertex_style = {'draw': self.options.vertex_bool,
+ 'stroke': self.get_color_string(self.options.vertex_stroke_color),
+ 'fill': 'none',
+ 'stroke-width': self.options.vertex_stroke_width*unit_factor}
+
+ # check if dashed option selected
+ if self.options.mountain_dashes_bool:
+ dash = self.options.mountain_dashes_len*self.options.mountain_dashes_duty*unit_factor
+ gap = abs(dash - self.options.mountain_dashes_len*unit_factor)
+ mountain_style['stroke-dasharray'] = "{},{}".format(dash, gap)
+ if self.options.valley_dashes_bool:
+ dash = self.options.valley_dashes_len * self.options.valley_dashes_duty*unit_factor
+ gap = abs(dash - self.options.valley_dashes_len*unit_factor)
+ valley_style['stroke-dasharray'] = "{},{}".format(dash, gap)
+ if self.options.edge_dashes_bool:
+ dash = self.options.edge_dashes_len * self.options.edge_dashes_duty*unit_factor
+ gap = abs(dash - self.options.edge_dashes_len*unit_factor)
+ edge_style['stroke-dasharray'] = "{},{}".format(dash, gap)
+ if self.options.universal_dashes_bool:
+ dash = self.options.universal_dashes_len * self.options.universal_dashes_duty*unit_factor
+ gap = abs(dash - self.options.universal_dashes_len*unit_factor)
+ universal_style['stroke-dasharray'] = "{},{}".format(dash, gap)
+ if self.options.semicrease_dashes_bool:
+ dash = self.options.semicrease_dashes_len * self.options.semicrease_dashes_duty*unit_factor
+ gap = abs(dash - self.options.semicrease_dashes_len*unit_factor)
+ semicrease_style['stroke-dasharray'] = "{},{}".format(dash, gap)
+ if self.options.cut_dashes_bool:
+ dash = self.options.cut_dashes_len * self.options.cut_dashes_duty*unit_factor
+ gap = abs(dash - self.options.cut_dashes_len*unit_factor)
+ cut_style['stroke-dasharray'] = "{},{}".format(dash, gap)
+
+ self.styles_dict = {'m': mountain_style,
+ 'v': valley_style,
+ 'u': universal_style,
+ 's': semicrease_style,
+ 'c': cut_style,
+ 'e': edge_style,
+ 'p': vertex_style}
+
+ def get_color_string(self, longColor, verbose=False):
+ """ Convert the long into a #RRGGBB color value
+ - verbose=true pops up value for us in defaults
+ conversion back is A + B*256^1 + G*256^2 + R*256^3
+ """
+ # compatibility hack, no "long" in Python 3
+ try:
+ longColor = long(longColor)
+ if longColor < 0: longColor = long(longColor) & 0xFFFFFFFF
+ hexColor = hex(longColor)[2:-3]
+ except:
+ longColor = int(longColor)
+ hexColor = hex(longColor)[2:-2]
+ inkex.debug = inkex.utils.debug
+
+ hexColor = '#' + hexColor.rjust(6, '0').upper()
+ if verbose: inkex.debug("longColor = {}, hex = {}".format(longColor,hexColor))
+
+ return hexColor
+
+ def add_text(self, node, text, position, text_height=12):
+ """ Create and insert a single line of text into the svg under node.
+ """
+ line_style = {'font-size': '%dpx' % text_height, 'font-style':'normal', 'font-weight': 'normal',
+ 'fill': '#F6921E', 'font-family': 'Bitstream Vera Sans,sans-serif',
+ 'text-anchor': 'middle', 'text-align': 'center'}
+ line_attribs = {inkex.addNS('label','inkscape'): 'Annotation',
+ 'style': str(Inkex.style(line_style)),
+ 'x': str(position[0]),
+ 'y': str((position[1] + text_height) * 1.2)
+ }
+ line = etree.SubElement(node, inkex.addNS('text','svg'), line_attribs)
+ line.text = text
+
+
+ def calc_unit_factor(self):
+ return self.svg.unittouu(str(1.0) + self.options.units)
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Pleat_Circular.py b/extensions/OrigamiPatterns/Pleat_Circular.py
new file mode 100644
index 00000000..e7103f27
--- /dev/null
+++ b/extensions/OrigamiPatterns/Pleat_Circular.py
@@ -0,0 +1,91 @@
+#! /usr/bin/env python3
+
+import inkex
+import numpy as np
+from math import pi, sin, cos
+from Path import Path
+from Pattern import Pattern
+
+
+# Select name of class, inherits from Pattern
+# TODO:
+# 1) Implement __init__ method to get all custom options and then call Pattern's __init__
+# 2) Implement generate_path_tree to define all of the desired strokes
+
+class PleatCircular(Pattern):
+ def __init__(self):
+ Pattern.__init__(self)
+ self.add_argument("-p", "--pattern", default="pleat_circular", help="Origami pattern")
+ self.add_argument("--radius", type=float, default=55.0, help="Radius of circle")
+ self.add_argument("--ratio", type=float, default=0.4, help="Opening ratio")
+ self.add_argument("--rings", type=int, default=15, help="Number of rings")
+ self.add_argument("--simulation_mode", type=inkex.Boolean, default=True, help="Approximate circle and draw semicreases for simulation?")
+ self.add_argument("--sides", type=int, default=20, help="Number of sides for polygon approximating half circle")
+
+ def generate_path_tree(self):
+ """ Specialized path generation for your origami pattern
+ """
+ # retrieve saved parameters
+ unit_factor = self.calc_unit_factor()
+ R = self.options.radius * unit_factor
+ ratio = self.options.ratio
+ r = R * ratio
+ rings = self.options.rings
+ dr = (1.-ratio)*R/rings
+ self.translate = (R, R)
+
+ if not self.options.simulation_mode:
+ inner_circles = []
+ for i in range(1, rings):
+ inner_circles.append(Path((0, 0), radius=r + i*dr, style='m' if i % 2 else 'v'))
+
+ edges = [Path((0, 0), radius=R, style='e'),
+ Path((0, 0), radius=r, style='e')]
+
+ self.path_tree = [inner_circles, edges]
+
+ # append semicreases for simulation
+ else:
+ sides = self.options.sides
+ dtheta = pi / sides
+ # create diagonals
+ diagonals = []
+ for i in range(sides):
+ p1 = (0, 0)
+ p2 = (R * cos((1 + i * 2) * dtheta), R * sin((1 + i * 2) * dtheta))
+ diagonals.append(Path([p1, p2], 'u'))
+
+ s = sin(dtheta)
+ c = cos(dtheta)
+
+ # Edge
+ paths = [Path([(c * R, -s * R), (R, 0), (c * R, s * R)], style='e'),
+ Path([(c * r, -s * r), (r, 0), (c * r, s * r)], style='e')]
+
+ # MV circles
+ for i in range(1, rings):
+ r_i = r + i * dr
+ paths.append(Path([(c * r_i, -s * r_i), (r_i, 0), (c * r_i, s * r_i)],
+ style='m' if i % 2 else 'v'))
+
+ # Semicreases
+ top = []
+ bottom = []
+ for i in range(rings + 1):
+ r_i = r + i*dr
+ top.append((r_i*(1 + (i % 2)*(c-1)), -(i % 2)*s*r_i))
+ bottom.append((r_i*(1 + (i % 2)*(c-1)), (i % 2)*s*r_i))
+ paths = paths + [Path([(r, 0), (R, 0)], 's'), # straight line 1
+ Path([(r*c, r*s), (R*c, R*s)], 's', invert=True), # straight line 2
+ Path(top, 's'), # top half of semicrease pattern
+ Path(bottom, 's')] # bottom half of semicrease pattern
+
+ all_paths = [paths]
+ for i in range(1, sides):
+ all_paths.append(Path.list_rotate(all_paths[0], i*2*dtheta))
+
+ self.path_tree = all_paths
+
+# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
+if __name__ == '__main__':
+ PleatCircular().run()
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Template.py b/extensions/OrigamiPatterns/Template.py
new file mode 100644
index 00000000..c8305726
--- /dev/null
+++ b/extensions/OrigamiPatterns/Template.py
@@ -0,0 +1,97 @@
+#! /usr/bin/env python3
+
+import numpy as np
+from math import pi
+import inkex
+from Path import Path
+from Pattern import Pattern
+
+# Select name of class, inherits from Pattern
+# TODO:
+# 1) Implement __init__ method to get all custom options and then call Pattern's __init__
+# 2) Implement generate_path_tree to define all of the desired strokes
+
+class Template(Pattern):
+ def __init__(self):
+ Pattern.__init__(self)
+ self.add_argument('-p', '--pattern', default="template1", help="Origami pattern")
+ self.add_argument('--length', type=float, default=10.0, help="Length of grid square")
+ self.add_argument('--theta', type=int, default=0, help="Rotation angle (degree)")
+
+ def generate_path_tree(self):
+ """ Specialized path generation for your origami pattern
+ """
+ # retrieve conversion factor for selected unit
+ unit_factor = self.calc_unit_factor()
+
+ # retrieve saved parameters, and apply unit factor where needed
+ length = self.options.length * unit_factor
+ vertex_radius = self.options.vertex_radius * unit_factor
+ pattern = self.options.pattern
+ theta = self.options.theta * pi / 180
+
+ # create all Path instances defining strokes
+ # first define its points as a list of tuples...
+ mountain_h_stroke_points = [(length / 2, 0),
+ (length / 2, length)]
+ mountain_v_stroke_points = [(0, length / 2),
+ (length, length / 2)]
+
+ # ... and then create the Path instances, defining its type ('m' for mountain, etc...)
+ mountains = [Path(mountain_h_stroke_points, 'm' if pattern == 'template1' else 'v'),
+ Path(mountain_v_stroke_points, 'm' if pattern == 'template1' else 'v')]
+
+ # doing the same for valleys
+ valley_1st_stroke_points = [(0, 0),
+ (length, length)]
+ valley_2nd_stroke_points = [(0, length),
+ (length, 0)]
+ valleys = [Path(valley_1st_stroke_points, 'v' if pattern == 'template1' else 'm'),
+ Path(valley_2nd_stroke_points, 'v' if pattern == 'template1' else 'm')]
+
+
+
+ vertices = []
+ for i in range(3):
+ for j in range(3):
+ vertices.append(Path(((i/2.) * length, (j/2.) * length), style='p', radius=vertex_radius))
+
+ # multiplication is implemented as a rotation, and list_rotate implements rotation for list of Path instances
+ vertices = Path.list_rotate(vertices, theta, (1 * length, 1 * length))
+ mountains = Path.list_rotate(mountains, theta, (1 * length, 1 * length))
+ valleys = Path.list_rotate(valleys, theta, (1 * length, 1 * length))
+
+ # if Path constructor is called with more than two points, a single stroke connecting all of then will be
+ # created. Using method generate_separated_paths, you can instead return a list of separated strokes
+ # linking each two points
+ # create a list for edge strokes
+ edge_points = [(0 * length, 0 * length), # top left
+ (1 * length, 0 * length), # top right
+ (1 * length, 1 * length), # bottom right
+ (0 * length, 1 * length)] # bottom left
+
+ # create path from points to be able to use the already built rotate method
+ edges = Path(edge_points, 'e', closed=True)
+ edges = Path.list_rotate(edges, theta, (1 * length, 1 * length))
+
+ # division is implemented as a reflection, and list_reflect implements it for a list of Path instances
+ # here's a commented example:
+ # line_reflect = (0 * length, 2 * length, 1 * length, 1 * length)
+ # mountains = Path.list_reflect(mountains, line_reflect)
+ # valleys = Path.list_reflect(valleys, line_reflect)
+ # edges = Path.list_reflect(edges, line_reflect)
+
+ # IMPORTANT: at the end, save edge points as "self.edge_points", to simplify selection of single or multiple
+ # strokes for the edge
+ self.edge_points = edges.points
+
+ # IMPORTANT: the attribute "path_tree" must be created at the end, saving all strokes
+ self.path_tree = [mountains, valleys, vertices]
+ # if you decide not to declare "self.edge_points", then the edge must be explicitly created in the path_tree:
+ # self.path_tree = [mountains, valleys, vertices, edges]
+
+
+# Main function, creates an instance of the Class and calls self.draw() to draw the origami on inkscape
+# self.draw() is either a call to inkex.affect() or to svg.run(), depending on python version
+if __name__ == '__main__':
+ Template().run()
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/Waterbomb.py b/extensions/OrigamiPatterns/Waterbomb.py
new file mode 100644
index 00000000..658ced48
--- /dev/null
+++ b/extensions/OrigamiPatterns/Waterbomb.py
@@ -0,0 +1,103 @@
+#! /usr/bin/env python3
+
+import math
+import numpy as np
+import inkex
+from Path import Path
+from Pattern import Pattern
+
+# TODO:
+# Add fractional column number option
+
+class Waterbomb(Pattern):
+ def __init__(self):
+ Pattern.__init__(self)
+ self.add_argument("-p", "--pattern", default="waterbomb", help="Origami pattern")
+ self.add_argument("--pattern_first_line", default="waterbomb", help="Origami pattern")
+ self.add_argument("--pattern_last_line", default="waterbomb", help="Origami pattern")
+ self.add_argument("--lines", type=int, default=8, help="Number of lines")
+ self.add_argument("--columns", type=int, default=16, help="Number of columns")
+ self.add_argument("--length", type=float, default=10.0, help="Length of grid square")
+ self.add_argument('--phase_shift', type=inkex.Boolean, default=True, help='Shift phase of tesselation.')
+
+ def generate_path_tree(self):
+ """ Specialized path generation for Waterbomb tesselation pattern
+ """
+ unit_factor = self.calc_unit_factor()
+ length = self.options.length * unit_factor
+ vertex_radius = self.options.vertex_radius * unit_factor
+ cols = self.options.columns
+ lines = self.options.lines
+ phase_shift = self.options.phase_shift
+ pattern_first_line = self.options.pattern_first_line
+ pattern_last_line = self.options.pattern_last_line
+
+ # create vertices
+ vertex_line_types = [[Path(((i / 2.) * length, 0), style='p', radius=vertex_radius) for i in range(2*cols + 1)],
+ [Path((i * length, 0), style='p', radius=vertex_radius) for i in range(cols + 1)],
+ [Path(((i + 0.5) * length, 0), style='p', radius=vertex_radius) for i in range(cols)]]
+
+ vertices = []
+ for i in range(2*lines + 1):
+ if i % 2 == 0 or (pattern_first_line == 'magic_ball' and i == 1) or (pattern_last_line == 'magic_ball' and i == 2*lines - 1):
+ type = 0
+ elif(i/2 + phase_shift) % 2 == 0:
+ type = 1
+ else:
+ type = 2
+ vertices = vertices + Path.list_add(vertex_line_types[type], (0, 0.5*i*length))
+
+ # create a list for the horizontal creases and another for the vertical creases
+ # alternate strokes to minimize laser cutter path
+ corr_fist_line = length/2 if pattern_first_line == 'magic_ball' else 0
+ corr_last_line = length/2 if pattern_last_line == 'magic_ball' else 0
+ grid = [Path.generate_hgrid([0, length*cols], [0, length*lines], lines, 'm'),
+ Path.generate_vgrid([0, length*cols], [corr_fist_line, length*lines-corr_last_line], 2*cols, 'm')]
+
+ vgrid_a = Path.generate_vgrid([0, length * cols], [0, length / 2], 2 * cols, 'v')
+ vgrid_b = Path.list_add(vgrid_a, (0, (lines - 0.5) * length))
+ if pattern_first_line == 'magic_ball' and pattern_last_line == 'magic_ball':
+ grid[1] = [[vgrid_a[i], grid[1][i], vgrid_b[i]] if i % 2 == 0 else
+ [vgrid_b[i], grid[1][i], vgrid_a[i]] for i in range(len(grid[1]))]
+ elif pattern_first_line == 'magic_ball':
+ grid[1] = [[vgrid_a[i], grid[1][i]] if i % 2 == 0 else
+ [grid[1][i], vgrid_a[i]] for i in range(len(grid[1]))]
+ elif pattern_last_line == 'magic_ball':
+ grid[1] = [[grid[1][i], vgrid_b[i]] if i % 2 == 0 else
+ [vgrid_b[i], grid[1][i]] for i in range(len(grid[1]))]
+
+ # create generic valley Path lines, one pointing up and other pointing down
+ valley_types = [Path([(i * length / 2, (1 - i % 2) * length / 2) for i in range(2 * cols + 1)], 'v'),
+ Path([( i*length/2, (i % 2)*length/2) for i in range(2 * cols + 1)], 'v')]
+
+ # define which lines must be of which type, according to parity and options
+ senses = np.array([bool((i % 2+i)/2 % 2) for i in range(2*lines)])
+ senses = 1*senses # converts bool array to 0's and 1's
+ if phase_shift:
+ senses = np.invert(senses)
+ if pattern_first_line == "magic_ball":
+ senses[0] = ~senses[0]
+ if pattern_last_line == "magic_ball":
+ senses[-1] = ~senses[-1]
+ valleys = [valley_types[senses[i]] + (0, i * length / 2) for i in range(2*lines)]
+
+ # convert first and last lines to mountains if magic_ball
+ if pattern_first_line == "magic_ball":
+ valleys[0].style = 'm'
+ if pattern_last_line == "magic_ball":
+ valleys[-1].style = 'm'
+
+ # invert every two lines to minimize laser cutter movements
+ for i in range(1, 2*lines, 2):
+ valleys[i].invert()
+
+ self.edge_points = [(0*length*cols, 0*length*lines), # top left
+ (1*length*cols, 0*length*lines), # top right
+ (1*length*cols, 1*length*lines), # bottom right
+ (0*length*cols, 1*length*lines)] # bottom left
+
+ self.path_tree = [grid, valleys, vertices]
+
+
+if __name__ == '__main__':
+ Waterbomb().run()
\ No newline at end of file
diff --git a/extensions/OrigamiPatterns/__init__.py b/extensions/OrigamiPatterns/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/extensions/fablabchemnitz_origami_patterns_kresling.inx b/extensions/fablabchemnitz_origami_patterns_kresling.inx
new file mode 100644
index 00000000..f8eaa1ca
--- /dev/null
+++ b/extensions/fablabchemnitz_origami_patterns_kresling.inx
@@ -0,0 +1,92 @@
+
+
+ <_name>Origami Pattern - Kresling tower
+ fablabchemnitz.de.origami_patterns.kresling_full
+
+
+
+ <_option value="regular">Regular
+ <_option value="mirrowed">Mirror odd cells
+
+ <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
+ 3
+ 6
+ <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
+ 10.0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
+
+
+
+
+ 0.5
+ 0.5
+ 60.0
+
+
+
+ false
+ 100
+ <_param name="help" type="description" xml:space="preserve">------------------------------------------------------------
+
+
+ true
+ true
+ 1
+ 0.5
+ 0.1
+ 4278190335
+
+
+ true
+ true
+ 1
+ 0.25
+ 0.1
+ 65535
+
+
+ true
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 255
+
+
+ false
+ 0.1
+ 0.1
+ 255
+
+
+
+ all
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/extensions/fablabchemnitz_origami_patterns_pleat_circular.inx b/extensions/fablabchemnitz_origami_patterns_pleat_circular.inx
new file mode 100644
index 00000000..4a2eea9e
--- /dev/null
+++ b/extensions/fablabchemnitz_origami_patterns_pleat_circular.inx
@@ -0,0 +1,67 @@
+
+
+ <_name>Origami Pattern - Circular
+ fablabchemnitz.de.origami_patterns.pleat_circular
+
+
+ 55.0
+
+
+
+
+
+
+ 0.4
+ 15
+ <_param name="help" type="description" xml:space="preserve">------------------------------
+ true
+ <_param name="help" type="description" xml:space="preserve">To simulate with OrigamiSimulator, semicreases (or facet creases) must be added to properly simulate paper, and the circles must be approximated as polygons.
+ 20
+
+
+ true
+ true
+ 1
+ 0.5
+ 0.1
+ 4278190335
+
+
+ true
+ true
+ 1
+ 0.25
+ 0.1
+ 65535
+
+
+ true
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 255
+
+
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 4294902015
+
+
+
+
+ all
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/extensions/fablabchemnitz_origami_patterns_pleat_hypar.inx b/extensions/fablabchemnitz_origami_patterns_pleat_hypar.inx
new file mode 100644
index 00000000..8b011ec8
--- /dev/null
+++ b/extensions/fablabchemnitz_origami_patterns_pleat_hypar.inx
@@ -0,0 +1,78 @@
+
+
+ <_name>Origami Pattern - N-sided Hypar
+ fablabchemnitz.de.origami_patterns.pleat_hypar
+
+
+
+ <_option value="classic">Classic Hypar
+ <_option value="asymmetric">Asymmetric triangulation
+ <_option value="alternate_asymmetric">Alternating asymmetric triangulation
+
+ 100.0
+
+
+
+
+
+
+ 4
+ 7
+ false
+ <_param name="help" type="description" xml:space="preserve">Implements Hypar (classical hyperbolic paraboloid approximate).
Classic Hypar is the easiest one to fold. However, it's not rigid foldable. More information in:
Demaine, E. D., Demaine, M. L., Hart, V., Price, G. N., & Tachi, T. (2011). (Non)Existence of Pleated Folds: How Paper Folds Between Creases. Graphs and Combinatorics, 27(3), 377–397. https://doi.org/10.1007/s00373-011-1025-2
+
+
+
+ true
+ true
+ 1
+ 0.5
+ 0.1
+ 4278190335
+
+
+ true
+ true
+ 1
+ 0.25
+ 0.1
+ 65535
+
+
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 4278255615
+
+
+ true
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 255
+
+
+ false
+ 0.1
+ 0.1
+ 255
+
+
+
+
+ all
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/extensions/fablabchemnitz_origami_patterns_template.inx b/extensions/fablabchemnitz_origami_patterns_template.inx
new file mode 100644
index 00000000..19e30b3d
--- /dev/null
+++ b/extensions/fablabchemnitz_origami_patterns_template.inx
@@ -0,0 +1,90 @@
+
+
+ <_name>Origami Pattern - Template effect
+ fablabchemnitz.de.origami_patterns.template
+
+
+
+ <_option value="template1">Template pattern 1
+ <_option value="template2">Template pattern 2
+
+ 10.0
+
+
+
+
+
+
+ 0
+ <_param name="help" type="description" xml:space="preserve">The .inx file defines the bridge between Inkscape's interface and the python script.
+
+
+
+ true
+ true
+ 1
+ 0.5
+ 0.1
+ 4278190335
+
+
+ true
+ true
+ 1
+ 0.25
+ 0.1
+ 65535
+
+
+ true
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 255
+
+
+ true
+ 0.1
+ 0.1
+ 255
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ all
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/extensions/fablabchemnitz_origami_patterns_waterbomb.inx b/extensions/fablabchemnitz_origami_patterns_waterbomb.inx
new file mode 100644
index 00000000..f37123e0
--- /dev/null
+++ b/extensions/fablabchemnitz_origami_patterns_waterbomb.inx
@@ -0,0 +1,73 @@
+
+
+ <_name>Origami Pattern - Waterbomb
+ fablabchemnitz.de.origami_patterns.magic_ball
+
+
+
+ <_option value="waterbomb">Regular waterbomb
+ <_option value="magic_ball">Magic ball
+
+
+ <_option value="waterbomb">Regular waterbomb
+ <_option value="magic_ball">Magic ball
+
+ false
+ <_param name="help" type="description" xml:space="preserve">------------------------------
+ 8
+ 16
+ <_param name="help" type="description" xml:space="preserve">------------------------------
+ 10.0
+
+
+
+
+
+
+ <_param name="help" type="description" xml:space="preserve">"Waterbomb tessellation" creates a simple tessellation pattern repeating the Waterbomb base, with a half-step phase shift between each line.
The Magic ball is a different design that inverts both the upper half of the first line and the bottom half of the last line.
+
+
+
+ true
+ true
+ 1
+ 0.5
+ 0.1
+ 4278190335
+
+
+ true
+ true
+ 1
+ 0.25
+ 0.1
+ 65535
+
+
+ true
+ true
+ false
+ 1
+ 0.25
+ 0.1
+ 255
+
+
+ false
+ 0.1
+ 0.1
+ 255
+
+
+
+ all
+
+
+
+
+
+
+
+
\ No newline at end of file