Initial commit

This commit is contained in:
Mario Voigt
2020-07-30 01:16:18 +02:00
parent 9ead5330fa
commit fc012a2896
2983 changed files with 568355 additions and 0 deletions

View File

@ -0,0 +1,92 @@
from __future__ import division
from PathSegment import *
from math import hypot
class BezierCurve(PathSegment):
nr_points = 10
def __init__(self, P): # number of points is limited to 3 or 4
if len(P) == 3: # quadratic
self.B = lambda t : (1 - t)**2 * P[0] + 2 * (1 - t) * t * P[1] + t**2 * P[2]
self.Bd = lambda t : 2 * (1 - t) * (P[1] - P[0]) + 2 * t * (P[2] - P[1])
self.Bdd = lambda t : 2 * (P[2] - 2 * P[1] + P[0])
elif len(P) == 4: #cubic
self.B = lambda t : (1 - t)**3 * P[0] + 3 * (1 - t)**2 * t * P[1] + 3 * (1 - t) * t**2 * P[2] + t**3 * P[3]
self.Bd = lambda t : 3 * (1 - t)**2 * (P[1] - P[0]) + 6 * (1 - t) * t * (P[2] - P[1]) + 3 * t**2 * (P[3] - P[2])
self.Bdd = lambda t : 6 * (1 - t) * (P[2] - 2 * P[1] + P[0]) + 6 * t * (P[3] - 2 * P[2] + P[1])
self.tangent = lambda t : self.Bd(t)
# self.curvature = lambda t : (Bd(t).x * Bdd(t).y - Bd(t).y * Bdd(t).x) / hypot(Bd(t).x, Bd(t).y)**3
self.distances = [0] # cumulative distances for each 't'
prev_pt = self.B(0)
for i in range(self.nr_points):
t = (i + 1) / self.nr_points
pt = self.B(t)
self.distances.append(self.distances[-1] + hypot(prev_pt.x - pt.x, prev_pt.y - pt.y))
prev_pt = pt
self._length = self.distances[-1]
def curvature(self, t):
n = self.Bd(t).x * self.Bdd(t).y - self.Bd(t).y * self.Bdd(t).x
d = hypot(self.Bd(t).x, self.Bd(t).y)**3
if d == 0:
return n * float('inf')
else:
return n / d
@classmethod
def quadratic(cls, start, c, end):
bezier = cls()
@classmethod
def cubic(cls, start, c1, c2, end):
bezier = cls()
def __make_eq__(self):
pass
@property
def length(self):
return self._length
def subdivide(self, part_length, start_offset=0):
nr_parts = int((self.length - start_offset) // part_length)
k_o = start_offset / self.length
k2t = lambda k : k_o + k * part_length / self.length
points = [self.pathpoint_at_t(k2t(k)) for k in range(nr_parts + 1)]
return(points, self.length - points[-1].c_dist)
def pathpoint_at_t(self, t):
"""pathpoint on the curve from t=0 to point at t."""
step = 1 / self.nr_points
pt_idx = int(t / step)
length = self.distances[pt_idx]
ip_fact = (t - pt_idx * step) / step
if ip_fact > 0 and t < 1: # not a perfect match, need to interpolate
length += ip_fact * (self.distances[pt_idx + 1] - self.distances[pt_idx])
return PathPoint(t, self.B(t), self.tangent(t), self.curvature(t), length)
def t_at_length(self, length):
"""interpolated t where the curve is at the given length"""
if length == self.length:
return 1
i_small = 0
i_big = self.nr_points + 1
while i_big - i_small > 1: # binary search
i_half = i_small + (i_big - i_small) // 2
if self.distances[i_half] <= length:
i_small = i_half
else:
i_big = i_half
small_dist = self.distances[i_small]
return i_small / self.nr_points + (length - small_dist) * (self.distances[i_big] - small_dist) # interpolated length

View File

@ -0,0 +1,104 @@
from math import *
def inner_product(a, b):
return a.x * b.x + a.y * b.y
class Coordinate(object):
"""
Basic (x, y) coordinate class (or should it be called vector?) which allows some simple operations.
"""
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
#polar coordinates
@property
def t(self):
angle = atan2(self.y, self.x)
if angle < 0:
angle += pi * 2
return angle
@t.setter
def t(self, value):
length = self.r
self.x = cos(value) * length
self.y = sin(value) * length
@property
def r(self):
return hypot(self.x, self.y)
@r.setter
def r(self, value):
angle = self.t
self.x = cos(angle) * value
self.y = sin(angle) * value
def __repr__(self):
return self.__str__()
def __str__(self):
return "(%f, %f)" % (self.x, self.y)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def __add__(self, other):
return Coordinate(self.x + other.x, self.y + other.y)
def __sub__(self, other):
return Coordinate(self.x - other.x, self.y - other.y)
def __mul__(self, factor):
return Coordinate(self.x * factor, self.y * factor)
def __neg__(self):
return Coordinate(-self.x, -self.y)
def __rmul__(self, other):
return self * other
def __div__(self, quotient):
return Coordinate(self.x / quotient, self.y / quotient)
def __truediv__(self, quotient):
return self.__div__(quotient)
def dot(self, other):
"""dot product"""
return self.x * other.x + self.y * other.y
def cross_norm(self, other):
""""the norm of the cross product"""
self.x * other.y - self.y * other.x
def close_enough_to(self, other, limit=1E-9):
return (self - other).r < limit
class IntersectionError(ValueError):
"""Raised when two lines do not intersect."""
def on_segment(pt, start, end):
"""Check if pt is between start and end. The three points are presumed to be collinear."""
pt -= start
end -= start
ex, ey = end.x, end.y
px, py = pt.x, pt.y
px *= cmp(ex, 0)
py *= cmp(ey, 0)
return px >= 0 and px <= abs(ex) and py >= 0 and py <= abs(ey)
def intersection (s1, e1, s2, e2, on_segments = True):
D = (s1.x - e1.x) * (s2.y - e2.y) - (s1.y - e1.y) * (s2.x - e2.x)
if D == 0:
raise IntersectionError("Lines from {s1} to {e1} and {s2} to {e2} are parallel")
N1 = s1.x * e1.y - s1.y * e1.x
N2 = s2.x * e2.y - s2.y * e2.x
I = ((s2 - e2) * N1 - (s1 - e1) * N2) / D
if on_segments and not (on_segment(I, s1, e1) and on_segment(I, s2, e2)):
raise IntersectionError("Intersection {0} is not on line segments [{1} -> {2}] [{3} -> {4}]".format(I, s1, e1, s2, e2))
return I

View File

@ -0,0 +1,36 @@
import inkex
errormsg = inkex.errormsg
debug = inkex.debug
class Effect(inkex.Effect):
"""
Provides some extra features to inkex.Effect:
- Allows you to pass a list of options in stead of setting them one by one
- acces to unittouu() that is compatible between Inkscape versions 0.48 and 0.91
"""
def __init__(self, options=None):
inkex.Effect.__init__(self)
self.knownUnits = ['in', 'pt', 'px', 'mm', 'cm', 'm', 'km', 'pc', 'yd', 'ft']
if options != None:
for opt in options:
if len(opt) == 2:
self.arg_parser.add_argument('--' + opt[0], type = opt[1])
else:
self.arg_parser.add_argument('--' + opt[0], type = opt[1],default = opt[2], help = opt[3])
try:
inkex.Effect.unittouu # unitouu has moved since Inkscape 0.91
except AttributeError:
try:
def unittouu(self, unit):
return inkex.unittouu(unit)
except AttributeError:
pass
def effect(self):
"""
"""
pass

View File

@ -0,0 +1,157 @@
from __future__ import division
from math import *
from inkscape_helper.Coordinate import Coordinate
class Ellipse(object):
"""Used as a base class for EllipticArc."""
nr_points = 1024 #used for piecewise linear circumference calculation (ellipse circumference is tricky to calculate)
# approximate circumfere: c = pi * (3 * (a + b) - sqrt(10 * a * b + 3 * (a ** 2 + b ** 2)))
def __init__(self, x_radius, y_radius):
self.y_radius = y_radius
self.x_radius = x_radius
self.distances = [0]
theta = 0
self.angle_step = 2 * pi / self.nr_points
for i in range(self.nr_points):
prev_dist = self.distances[-1]
prev_coord = self.coordinate_at_theta(theta)
theta += self.angle_step
x, y = x_radius * cos(theta), y_radius * sin(theta)
self.distances.append(prev_dist + hypot(prev_coord.x - x, prev_coord.y - y))
@property
def circumference(self):
return self.distances[-1]
def curvature(self, theta):
c = self.coordinate_at_theta(theta)
return (self.x_radius*self.y_radius)/((cos(theta)**2*self.y_radius**2 + sin(theta)**2*self.x_radius**2)**(3/2))
def tangent(self, theta):
angle = self.theta_at_angle(theta)
return Coordinate(cos(angle), sin(angle))
def coordinate_at_theta(self, theta):
"""Coordinate of the point at theta."""
return Coordinate(self.x_radius * cos(theta), self.y_radius * sin(theta))
def dist_from_theta(self, theta_start, theta_end):
"""Distance accross the surface from point at angle theta_end to point at angle theta_end. Measured in positive (CCW) sense."""
#print 'thetas ', theta_start, theta_end # TODO: figure out why are there so many with same start and end?
# make sure thetas are between 0 and 2 * pi
theta_start %= 2 * pi
theta_end %= 2 * pi
i1 = int(theta_start / self.angle_step)
p1 = theta_start % self.angle_step
l1 = self.distances[i1 + 1] - self.distances[i1]
i2 = int(theta_end / self.angle_step)
p2 = theta_end % self.angle_step
l2 = self.distances[i2 + 1] - self.distances[i2]
if theta_start <= theta_end:
len = self.distances[i2] - self.distances[i1] + l2 * p2 - l1 * p1
else:
len = self.circumference + self.distances[i2] - self.distances[i1]
return len
def theta_from_dist(self, theta_start, dist):
"""Returns the angle that you get when starting at theta_start and moving a distance (dist) in CCW direction"""
si = int(theta_start / self.angle_step) % self.nr_points
p = theta_start % self.angle_step
piece_length = self.distances[si + 1] - self.distances[si]
start_dist = self.distances[si] + p * piece_length
end_dist = dist + start_dist
if end_dist > self.circumference: # wrap around zero angle
end_dist -= self.circumference
min_idx = 0
max_idx = self.nr_points
while max_idx - min_idx > 1: # binary search
half_idx = min_idx + (max_idx - min_idx) // 2
if self.distances[half_idx] < end_dist:
min_idx = half_idx
else:
max_idx = half_idx
step_dist = self.distances[max_idx] - self.distances[min_idx]
return (min_idx + (end_dist - self.distances[min_idx]) / step_dist) * self.angle_step
def theta_at_angle(self, angle):
cf = 0
if angle > pi / 2:
cf = pi
if angle > 3 * pi / 2:
cf = 2 * pi
return atan(self.x_radius/self.y_radius * tan(angle)) + cf
def skewTransform(self, l, a2, b2):
x0 = a2**2
x1 = b2**2
x2 = l**2
x3 = x0*x2
x4 = x0 - x1 + x3
x5 = 2*a2*b2
x6 = x0 + x1 + x3
x7 = sqrt((-x5 + x6)*(x5 + x6))
x9 = 1/(x4 - x7)
x10 = x6 - x7
x11 = l*x10
x12 = b2**4
x13 = 4*x12
x14 = x10**2
x15 = 4*x1
x16 = sqrt(-x10*x15 + x13 + x14*x2 + x14)
x17 = 2*atan(x9*(x11 - x16))
x18 = sqrt(2)
x19 = sqrt(x10)
x20 = b2*x18*x19/2
x21 = x0/2
x22 = x1/2
x23 = x2*x21
x24 = x21 - x22 + x23
x25 = x7/2
x27 = 1/(x24 - x25)
x28 = x21 + x22 + x23
x29 = x28 - x25
x30 = l*x29
x31 = x14/4
x32 = 2*x1
x33 = sqrt(x12 + x2*x31 - x29*x32 + x31)
x34 = 2*atan(x27*(x30 - x33))
x35 = x20*sqrt(1/(-x1*cos(x34)**2 + x29))*sin(x34)
x36 = x18/2
x37 = -x19*x36
x39 = 2*atan(x9*(x11 + x16))
x40 = 2*atan(x27*(x30 + x33))
x41 = x20*sqrt(1/(-x1*cos(x40)**2 + x29))*sin(x40)
x42 = 1/(x4 + x7)
x43 = x6 + x7
x44 = l*x43
x45 = x43**2
x46 = sqrt(x13 - x15*x43 + x2*x45 + x45)
x47 = 2*atan(x42*(x44 - x46))
x48 = sqrt(x43)
x49 = b2*x18*x48/2
x50 = 1/(x24 + x25)
x51 = x25 + x28
x52 = l*x51
x53 = x45/4
x54 = sqrt(x12 + x2*x53 - x32*x51 + x53)
x55 = 2*atan(x50*(x52 - x54))
x56 = x49*sqrt(1/(-x1*cos(x55)**2 + x51))*sin(x55)
x57 = -x36*x48
x59 = 2*atan(x42*(x44 + x46))
x60 = 2*atan(x50*(x52 + x54))
x61 = x49*sqrt(1/(-x1*cos(x60)**2 + x51))*sin(x60)
#solutions (alpha, a1, b1)
(x17, -x35, x19*x36)
(x17, x35, x37)
(x39, -x41, x19*x36)
(x39, x41, x37)
(x47, -x56, x36*x48)
(x47, x56, x57)
(x59, -x61, x36*x48)
(x59, x61, x57)

View File

@ -0,0 +1,125 @@
from inkscape_helper.PathSegment import *
from inkscape_helper.Coordinate import Coordinate
from inkscape_helper.Ellipse import Ellipse
from math import sqrt, pi
import copy
class EllipticArc(PathSegment):
ell_dict = {}
def __init__(self, start, end, rx, ry, axis_rot, pos_dir=True, large_arc=False):
self.rx = rx
self.ry = ry
# calculate ellipse center
# the center is on two ellipses one with its center at the start point, the other at the end point
# for simplicity take the one ellipse at the origin and the other with offset (tx, ty),
# find the center and translate back to the original offset at the end
axis_rot *= pi / 180 # convert to radians
# start and end are mutable objects, copy to avoid modifying them
r_start = copy.copy(start)
r_end = copy.copy(end)
r_start.t -= axis_rot
r_end.t -= axis_rot
end_o = r_end - r_start # offset end vector
tx = end_o.x
ty = end_o.y
# some helper variables for the intersection points
# used sympy to come up with the equations
ff = (rx**2*ty**2 + ry**2*tx**2)
cx = rx**2*ry*tx*ty**2 + ry**3*tx**3
cy = rx*ty*ff
sx = rx*ty*sqrt(4*rx**4*ry**2*ty**2 - rx**4*ty**4 + 4*rx**2*ry**4*tx**2 - 2*rx**2*ry**2*tx**2*ty**2 - ry**4*tx**4)
sy = ry*tx*sqrt(-ff*(-4*rx**2*ry**2 + rx**2*ty**2 + ry**2*tx**2))
# intersection points
c1 = Coordinate((cx - sx) / (2*ry*ff), (cy + sy) / (2*rx*ff))
c2 = Coordinate((cx + sx) / (2*ry*ff), (cy - sy) / (2*rx*ff))
if end_o.cross_norm(c1 - r_start) < 0: # c1 is to the left of end_o
left = c1
right = c2
else:
left = c2
right = c1
if pos_dir != large_arc: #center should be on the left of end_o
center_o = left
else: #center should be on the right of end_o
center_o = right
#re-use ellipses with same rx, ry to save some memory
if (rx, ry) in self.ell_dict:
self.ellipse = self.ell_dict[(rx, ry)]
else:
self.ellipse = Ellipse(rx, ry)
self.ell_dict[(rx, ry)] = self.ellipse
self.start = start
self.end = end
self.axis_rot = axis_rot
self.pos_dir = pos_dir
self.large_arc = large_arc
self.start_theta = self.ellipse.theta_at_angle((-center_o).t)
self.end_theta = self.ellipse.theta_at_angle((end_o - center_o).t)
# translate center back to original offset
center_o.t += axis_rot
self.center = center_o + start
@property
def length(self):
return self.ellipse.dist_from_theta(self.start_theta, self.end_theta)
def t_to_theta(self, t):
"""convert t (always between 0 and 1) to angle theta"""
start = self.start_theta
end = self.end_theta
if self.pos_dir and end < start:
end += 2 * pi
if not self.pos_dir and start < end:
end -= 2 * pi
arc_size = end - start
return (start + (end - start) * t) % (2 * pi)
def theta_to_t(self, theta):
full_arc_size = (self.end_theta - self.start_theta + 2 * pi) % (2 * pi)
theta_arc_size = (theta - self.start_theta + 2 * pi) % (2 * pi)
return theta_arc_size / full_arc_size
def curvature(self, t):
theta = self.t_to_theta(t)
return self.ellipse.curvature(theta)
def tangent(self, t):
theta = self.t_to_theta(t)
return self.ellipse.tangent(theta)
def t_at_length(self, length):
"""interpolated t where the curve is at the given length"""
theta = self.ellipse.theta_from_dist(length, self.start_theta)
return self.theta_to_t(theta)
def length_at_t(self, t):
return self.ellipse.dist_from_theta(self.start_theta, self.t_to_theta(t))
def pathpoint_at_t(self, t):
"""pathpoint on the curve from t=0 to point at t."""
centered = self.ellipse.coordinate_at_theta(self.t_to_theta(t))
centered.t += self.axis_rot
return PathPoint(t, centered + self.center, self.tangent(t), self.curvature(t), self.length_at_t(t))
# identical to Bezier code
def subdivide(self, part_length, start_offset=0):
nr_parts = int((self.length - start_offset) // part_length)
k_o = start_offset / self.length
k2t = lambda k : k_o + k * part_length / self.length
points = [self.pathpoint_at_t(k2t(k)) for k in range(nr_parts + 1)]
return(points, self.length - points[-1].c_dist)

View File

@ -0,0 +1,25 @@
from inkscape_helper.PathSegment import *
class Line(PathSegment):
def __init__(self, start, end):
self.start = start
self.end = end
self.pp = lambda t : PathPoint(t, self.start + t * (self.end - self.start), self.end - self.start, 0, t * self.length)
@property
def length(self):
return (self.end - self.start).r
def subdivide(self, part_length, start_offset=0): # note: start_offset should be smaller than part_length
nr_parts = int((self.length - start_offset) // part_length)
k_o = start_offset / self.length
k2t = lambda k : k_o + k * part_length / self.length
points = [self.pp(k2t(k)) for k in range(nr_parts + 1)]
return(points, self.length - points[-1].c_dist)
def pathpoint_at_t(self, t):
return self.pp(t)
def t_at_length(self, length):
return length / self.length

View File

@ -0,0 +1,49 @@
import copy
class Matrix(object):
"""
Matrix class with some basic matrix operations
"""
def __init__(self, array):
columns = len(array[0])
for r in array[1:]: #make sure each row has same number of columns
assert len(r) == columns
self.array = copy.copy(array)
self.rows = len(array)
self.columns = columns
def __repr__(self):
return self.__str__()
def __str__(self):
a = ['[' + ', '.join([str(i) for i in r]) + ']' for r in self.array]
return '[\n' + ',\n'.join(a) + '\n]'
def minor(self, row, col):
return Matrix([[self[r][c] for c in range(self.columns) if c != col] for r in range(self.rows) if r != row])
def det(self):
if self.rows != self.columns:
raise TypeError, 'Can only calculate determinant for a square matrix'
if self.rows == 1:
return self[0][0]
if self.rows == 2:
return self[0][0] * self[1][1] - self[0][1] * self[1][0]
det = 0
for i in range(self.columns):
det += (-1)**i * self.array[0][i] * self.minor(0, i).det()
return det
def __getitem__(self, index):
return self.array[index]
def __add__(self, other):
if self.rows != other.rows or self.columns != other.columns:
raise TypeError, 'Both matrices should have equal dimensions. Is ({} x {}) and ({} x {}).'.format(self.rows, self.columns, other.rows, other.columns)
return Matrix([[self[r][c] + other[r][c] for c in range(self.columns)] for r in range(self.rows)])
def __mul__(self, other):
if self.columns != other.rows:
raise TypeError, 'Left matrix should have same number of columns as right matrix has rows. Is ({} x {}) and ({} x {}).'.format(self.rows, self.columns, other.rows, other.columns)
return Matrix([[sum([self[r][i] * other[i][c] for i in range(self.columns)]) for c in range(other.columns)] for r in range(self.rows)])

View File

@ -0,0 +1,29 @@
from collections import namedtuple
PathPoint = namedtuple('PathPoint', 't coord tangent curvature c_dist')
class PathSegment(object):
def __init__(self):
raise NotImplementedError
@property
def lenth(self):
raise NotImplementedError
def subdivide(self, part_length):
raise NotImplementedError
def pathpoint_at_t(self, t):
raise NotImplementedError
def t_at_length(self, length):
raise NotImplementedError
# also need:
# find a way do do curvature dependent spacing
# - based on deviation from a standard radius?
# - or ratio between thickness and curvature?
#def point_at_distance(d):
# pass

View File

@ -0,0 +1,93 @@
import inkex
import simplestyle
from lxml import etree
def _format_1st(command, is_absolute):
"""Small helper function for the Path class"""
return command.upper() if is_absolute else command.lower()
default_style = str(inkex.Style(
{'stroke': '#000000',
'stroke-width': '0.1',
'fill': 'none'
}))
red_style = str(inkex.Style(
{'stroke': '#FF0000',
'stroke-width': '0.1',
'fill': 'none'
}))
green_style = str(inkex.Style(
{'stroke': '#00FF00',
'stroke-width': '0.1',
'fill': 'none'
}))
blue_style = str(inkex.Style(
{'stroke': '#0000FF',
'stroke-width': '0.1',
'fill': 'none'
}))
def layer(parent, layer_name):
layer = etree.SubElement(parent, 'g')
layer.set(inkex.addNS('label', 'inkscape'), layer_name)
layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
return layer
def group(parent):
return etree.SubElement(parent, 'g')
def text(parent, coordinate, txt, style=default_style):
text = etree.Element(inkex.addNS('text', 'svg'))
text.text = txt
text.set('x', str(coordinate.x))
text.set('y', str(coordinate.y))
style = {'text-align': 'center', 'text-anchor': 'middle'}
text.set('style', str(inkex.Style(style)))
parent.append(text)
class Path(object):
"""
Generates SVG paths
"""
def __init__(self):
self.nodes = []
def move_to(self, coord, absolute=False):
self.nodes.append("{0} {1} {2}".format(_format_1st('m', absolute), coord.x, coord.y))
def line_to(self, coord, absolute=False):
self.nodes.append("{0} {1} {2}".format(_format_1st('l', absolute), coord.x, coord.y))
def h_line_to(self, dist, absolute=False):
self.nodes.append("{0} {1}".format(_format_1st('h', absolute), dist))
def v_line_to(self, dist, absolute=False):
self.nodes.append("{0} {1}".format(_format_1st('v', absolute), dist))
def arc_to(self, radius, coord, rotation=0, pos_sweep=True, large_arc=False, absolute=False):
self.nodes.append("{0} {1} {2} {3} {4} {5} {6} {7}"
.format(_format_1st('a', absolute), radius.x, radius.y, rotation,
1 if large_arc else 0, 1 if pos_sweep else 0, coord.x, coord.y))
def close(self):
self.nodes.append('z')
def path(self, parent, style=default_style):
attribs = {'style': style,
'd': ' '.join(self.nodes)}
etree.SubElement(parent, inkex.addNS('path', 'svg'), attribs)
def curve(self, parent, segments, style, closed=True):
pathStr = ' '.join(segments)
if closed:
pathStr += ' z'
attributes = {
'style': style,
'd': pathStr}
etree.SubElement(parent, inkex.addNS('path', 'svg'), attributes)
def remove_last(self):
self.nodes.pop()

View File