#!/usr/bin/env python3 """ Modified by Jay Johnson 2015, J Tech Photonics, Inc., jtechphotonics.com modified by Adam Polak 2014, polakiumengineering.org based on Copyright (C) 2009 Nick Drobchenko, nick@cnc-club.ru based on gcode.py (C) 2007 hugomatic... based on addnodes.py (C) 2005,2007 Aaron Spike, aaron@ekips.org based on dots.py (C) 2005 Aaron Spike, aaron@ekips.org based on interp.py (C) 2005 Aaron Spike, aaron@ekips.org based on bezmisc.py (C) 2005 Aaron Spike, aaron@ekips.org based on cubicsuperpath.py (C) 2005 Aaron Spike, aaron@ekips.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ import inkex import simpletransform import os import math import bezmisc import re import sys import time import numpy import gettext _ = gettext.gettext # Deprecation hack. Access the formatStyle differently for inkscape >= 1.0 target_version = 1.0 if target_version < 1.0: # simplestyle import simplestyle # etree etree = inkex.etree # cubicsuperpath import cubicsuperpath parsePath = cubicsuperpath.parsePath # Inkex.Boolean inkex.Boolean = bool else: # simplestyle # Class and method names follow the old Inkscape API for compatibility's sake. # When support is dropped for older versions this can be ganged to follow PEP 8. class simplestyle(object): # noqa # I think anonymous declarations would have been cleaner. However, Python 2 doesn't like how I use them @staticmethod def formatStyle(a): # noqa return str(inkex.Style(a)) @staticmethod def parseStyle(s): # noqa return dict(inkex.Style.parse_str(s)) # etree from lxml import etree # noqa # cubicsuperpath from inkex.paths import CubicSuperPath # noqa parsePath = CubicSuperPath # Check if inkex has error messages. (0.46 version does not have one) Could be removed later. if "errormsg" not in dir(inkex): inkex.errormsg = lambda msg: sys.stderr.write((str(msg) + "\n").encode("UTF-8")) def bezierslopeatt(xxx_todo_changeme, t): ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = xxx_todo_changeme ax, ay, bx, by, cx, cy, x0, y0 = bezmisc.bezierparameterize(((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3))) dx = 3 * ax * (t ** 2) + 2 * bx * t + cx dy = 3 * ay * (t ** 2) + 2 * by * t + cy if dx == dy == 0: dx = 6 * ax * t + 2 * bx dy = 6 * ay * t + 2 * by if dx == dy == 0: dx = 6 * ax dy = 6 * ay if dx == dy == 0: print_("Slope error x = %s*t^3+%s*t^2+%s*t+%s, y = %s*t^3+%s*t^2+%s*t+%s, t = %s, dx==dy==0" % ( ax, bx, cx, dx, ay, by, cy, dy, t)) print_(((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3))) dx, dy = 1, 1 return dx, dy bezmisc.bezierslopeatt = bezierslopeatt ################################################################################ # # Styles and additional parameters # ################################################################################ math.pi2 = math.pi * 2 straight_tolerance = 0.0001 straight_distance_tolerance = 0.0001 engraving_tolerance = 0.0001 loft_lengths_tolerance = 0.0000001 options = {} defaults = { 'header': """ G90 """, 'footer': """G1 X0 Y0 """ } intersection_recursion_depth = 10 intersection_tolerance = 0.00001 styles = { "loft_style": { 'main curve': simplestyle.formatStyle( {'stroke': '#88f', 'fill': 'none', 'stroke-width': '1', 'marker-end': 'url(#Arrow2Mend)'}), }, "biarc_style": { 'biarc0': simplestyle.formatStyle( {'stroke': '#88f', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#8f8', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'line': simplestyle.formatStyle( {'stroke': '#f88', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'area': simplestyle.formatStyle( {'stroke': '#777', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.1'}), }, "biarc_style_dark": { 'biarc0': simplestyle.formatStyle( {'stroke': '#33a', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#3a3', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'line': simplestyle.formatStyle( {'stroke': '#a33', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'area': simplestyle.formatStyle( {'stroke': '#222', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "biarc_style_dark_area": { 'biarc0': simplestyle.formatStyle( {'stroke': '#33a', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.1'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#3a3', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.1'}), 'line': simplestyle.formatStyle( {'stroke': '#a33', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.1'}), 'area': simplestyle.formatStyle( {'stroke': '#222', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "biarc_style_i": { 'biarc0': simplestyle.formatStyle( {'stroke': '#880', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#808', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'line': simplestyle.formatStyle( {'stroke': '#088', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'area': simplestyle.formatStyle( {'stroke': '#999', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "biarc_style_dark_i": { 'biarc0': simplestyle.formatStyle( {'stroke': '#dd5', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#d5d', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'line': simplestyle.formatStyle( {'stroke': '#5dd', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '1'}), 'area': simplestyle.formatStyle( {'stroke': '#aaa', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "biarc_style_lathe_feed": { 'biarc0': simplestyle.formatStyle( {'stroke': '#07f', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#0f7', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'line': simplestyle.formatStyle( {'stroke': '#f44', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'area': simplestyle.formatStyle( {'stroke': '#aaa', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "biarc_style_lathe_passing feed": { 'biarc0': simplestyle.formatStyle( {'stroke': '#07f', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#0f7', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'line': simplestyle.formatStyle( {'stroke': '#f44', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'area': simplestyle.formatStyle( {'stroke': '#aaa', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "biarc_style_lathe_fine feed": { 'biarc0': simplestyle.formatStyle( {'stroke': '#7f0', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'biarc1': simplestyle.formatStyle( {'stroke': '#f70', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'line': simplestyle.formatStyle( {'stroke': '#744', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '.4'}), 'area': simplestyle.formatStyle( {'stroke': '#aaa', 'fill': 'none', "marker-end": "url(#DrawCurveMarker)", 'stroke-width': '0.3'}), }, "area artefact": simplestyle.formatStyle({'stroke': '#ff0000', 'fill': '#ffff00', 'stroke-width': '1'}), "area artefact arrow": simplestyle.formatStyle({'stroke': '#ff0000', 'fill': '#ffff00', 'stroke-width': '1'}), "dxf_points": simplestyle.formatStyle({"stroke": "#ff0000", "fill": "#ff0000"}), } ################################################################################ # Cubic Super Path additional functions ################################################################################ def csp_segment_to_bez(sp1, sp2): return sp1[1:] + sp2[:2] def csp_split(sp1, sp2, t=.5): [x1, y1], [x2, y2], [x3, y3], [x4, y4] = sp1[1], sp1[2], sp2[0], sp2[1] x12 = x1 + (x2 - x1) * t y12 = y1 + (y2 - y1) * t x23 = x2 + (x3 - x2) * t y23 = y2 + (y3 - y2) * t x34 = x3 + (x4 - x3) * t y34 = y3 + (y4 - y3) * t x1223 = x12 + (x23 - x12) * t y1223 = y12 + (y23 - y12) * t x2334 = x23 + (x34 - x23) * t y2334 = y23 + (y34 - y23) * t x = x1223 + (x2334 - x1223) * t y = y1223 + (y2334 - y1223) * t return [sp1[0], sp1[1], [x12, y12]], [[x1223, y1223], [x, y], [x2334, y2334]], [[x34, y34], sp2[1], sp2[2]] def csp_curvature_at_t(sp1, sp2, t, depth=3): ax, ay, bx, by, cx, cy, dx, dy = bezmisc.bezierparameterize(csp_segment_to_bez(sp1, sp2)) # curvature = (x'y''-y'x'') / (x'^2+y'^2)^1.5 f1x = 3 * ax * t ** 2 + 2 * bx * t + cx f1y = 3 * ay * t ** 2 + 2 * by * t + cy f2x = 6 * ax * t + 2 * bx f2y = 6 * ay * t + 2 * by d = (f1x ** 2 + f1y ** 2) ** 1.5 if d != 0: return (f1x * f2y - f1y * f2x) / d else: t1 = f1x * f2y - f1y * f2x if t1 > 0: return 1e100 if t1 < 0: return -1e100 # Use the Lapitals rule to solve 0/0 problem for 2 times... t1 = 2 * (bx * ay - ax * by) * t + (ay * cx - ax * cy) if t1 > 0: return 1e100 if t1 < 0: return -1e100 t1 = bx * ay - ax * by if t1 > 0: return 1e100 if t1 < 0: return -1e100 if depth > 0: # little hack ;^) hope it wont influence anything... return csp_curvature_at_t(sp1, sp2, t * 1.004, depth - 1) return 1e100 def csp_at_t(sp1, sp2, t): ax, bx, cx, dx = sp1[1][0], sp1[2][0], sp2[0][0], sp2[1][0] ay, by, cy, dy = sp1[1][1], sp1[2][1], sp2[0][1], sp2[1][1] x1, y1 = ax + (bx - ax) * t, ay + (by - ay) * t x2, y2 = bx + (cx - bx) * t, by + (cy - by) * t x3, y3 = cx + (dx - cx) * t, cy + (dy - cy) * t x4, y4 = x1 + (x2 - x1) * t, y1 + (y2 - y1) * t x5, y5 = x2 + (x3 - x2) * t, y2 + (y3 - y2) * t x, y = x4 + (x5 - x4) * t, y4 + (y5 - y4) * t return [x, y] def cspseglength(sp1, sp2, tolerance=0.001): bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:]) return bezmisc.bezierlength(bez, tolerance) # Distance calculation from point to arc def point_to_arc_distance(p, arc): P0, P2, c, a = arc dist = None p = P(p) r = (P0 - c).mag() if r > 0: i = c + (p - c).unit() * r alpha = ((i - c).angle() - (P0 - c).angle()) if a * alpha < 0: if alpha > 0: alpha = alpha - math.pi2 else: alpha = math.pi2 + alpha if between(alpha, 0, a) or min(abs(alpha), abs(alpha - a)) < straight_tolerance: return (p - i).mag(), (i.x, i.y) else: d1, d2 = (p - P0).mag(), (p - P2).mag() if d1 < d2: return (d1, (P0.x, P0.y)) else: return (d2, (P2.x, P2.y)) def csp_to_arc_distance(sp1, sp2, arc1, arc2, tolerance=0.01): # arc = [start,end,center,alpha] n, i = 10, 0 d, d1, dl = (0, (0, 0)), (0, (0, 0)), 0 while i < 1 or (abs(d1[0] - dl[0]) > tolerance and i < 4): i += 1 dl = d1 * 1 for j in range(n + 1): t = float(j) / n p = csp_at_t(sp1, sp2, t) d = min(point_to_arc_distance(p, arc1), point_to_arc_distance(p, arc2)) # inkex.utils.debug("---Debug---") # inkex.utils.debug(str(d1) + str(d)) # inkex.utils.debug(str(tuple(d1)) + str(tuple(d))) d1 = max(tuple(d1), tuple(d)) n = n * 2 return d1[0] ################################################################################ # Common functions ################################################################################ def atan2(*arg): if len(arg) == 1 and (type(arg[0]) == type([0., 0.]) or type(arg[0]) == type((0., 0.))): return (math.pi / 2 - math.atan2(arg[0][0], arg[0][1])) % math.pi2 elif len(arg) == 2: return (math.pi / 2 - math.atan2(arg[0], arg[1])) % math.pi2 else: raise ValueError("Bad argumets for atan! (%s)" % arg) def between(c, x, y): return x - straight_tolerance <= c <= y + straight_tolerance or y - straight_tolerance <= c <= x + straight_tolerance # Print arguments into specified log file def print_(*arg): f = open(options.log_filename, "a") for s in arg: s = str(str(s).encode('unicode_escape')) + " " f.write(s) f.write("\n") f.close() ################################################################################ # Point (x,y) operations ################################################################################ class P: def __init__(self, x, y=None): if not y == None: self.x, self.y = float(x), float(y) else: self.x, self.y = float(x[0]), float(x[1]) def __add__(self, other): return P(self.x + other.x, self.y + other.y) def __sub__(self, other): return P(self.x - other.x, self.y - other.y) def __neg__(self): return P(-self.x, -self.y) def __mul__(self, other): if isinstance(other, P): return self.x * other.x + self.y * other.y return P(self.x * other, self.y * other) __rmul__ = __mul__ def __div__(self, other): return P(self.x / other, self.y / other) # Added to support python 3 __floordiv__ = __div__ __truediv__ = __div__ def mag(self): return math.hypot(self.x, self.y) def unit(self): h = self.mag() if h: return self / h else: return P(0, 0) def angle(self): return math.atan2(self.y, self.x) def __repr__(self): return '%f,%f' % (self.x, self.y) def l2(self): return self.x * self.x + self.y * self.y ################################################################################ # # Biarc function # # Calculates biarc approximation of cubic super path segment # splits segment if needed or approximates it with straight line # ################################################################################ def biarc(sp1, sp2, z1, z2, depth=0): def biarc_split(sp1, sp2, z1, z2, depth): if depth < options.biarc_max_split_depth: sp1, sp2, sp3 = csp_split(sp1, sp2) l1, l2 = cspseglength(sp1, sp2), cspseglength(sp2, sp3) if l1 + l2 == 0: zm = z1 else: zm = z1 + (z2 - z1) * l1 / (l1 + l2) return biarc(sp1, sp2, z1, zm, depth + 1) + biarc(sp2, sp3, zm, z2, depth + 1) else: return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]] P0, P4 = P(sp1[1]), P(sp2[1]) TS, TE, v = (P(sp1[2]) - P0), -(P(sp2[0]) - P4), P0 - P4 tsa, tea, va = TS.angle(), TE.angle(), v.angle() if TE.mag() < straight_distance_tolerance and TS.mag() < straight_distance_tolerance: # Both tangents are zerro - line straight return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]] if TE.mag() < straight_distance_tolerance: TE = -(TS + v).unit() r = TS.mag() / v.mag() * 2 elif TS.mag() < straight_distance_tolerance: TS = -(TE + v).unit() r = 1 / (TE.mag() / v.mag() * 2) else: r = TS.mag() / TE.mag() TS, TE = TS.unit(), TE.unit() tang_are_parallel = ( (tsa - tea) % math.pi < straight_tolerance or math.pi - (tsa - tea) % math.pi < straight_tolerance) if (tang_are_parallel and (( v.mag() < straight_distance_tolerance or TE.mag() < straight_distance_tolerance or TS.mag() < straight_distance_tolerance) or 1 - abs(TS * v / (TS.mag() * v.mag())) < straight_tolerance)): # Both tangents are parallel and start and end are the same - line straight # or one of tangents still smaller then tollerance # Both tangents and v are parallel - line straight return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]] c, b, a = v * v, 2 * v * (r * TS + TE), 2 * r * (TS * TE - 1) if v.mag() == 0: return biarc_split(sp1, sp2, z1, z2, depth) asmall, bsmall, csmall = abs(a) < 10 ** -10, abs(b) < 10 ** -10, abs(c) < 10 ** -10 if asmall and b != 0: beta = -c / b elif csmall and a != 0: beta = -b / a elif not asmall: discr = b * b - 4 * a * c if discr < 0: raise ValueError(a, b, c, discr) disq = discr ** .5 beta1 = (-b - disq) / 2 / a beta2 = (-b + disq) / 2 / a if beta1 * beta2 > 0: raise ValueError(a, b, c, disq, beta1, beta2) beta = max(beta1, beta2) elif asmall and bsmall: return biarc_split(sp1, sp2, z1, z2, depth) alpha = beta * r ab = alpha + beta P1 = P0 + alpha * TS P3 = P4 - beta * TE P2 = (beta / ab) * P1 + (alpha / ab) * P3 def calculate_arc_params(P0, P1, P2): D = (P0 + P2) / 2 if (D - P1).mag() == 0: return None, None R = D - ((D - P0).mag() ** 2 / (D - P1).mag()) * (P1 - D).unit() p0a, p1a, p2a = (P0 - R).angle() % (2 * math.pi), (P1 - R).angle() % (2 * math.pi), (P2 - R).angle() % ( 2 * math.pi) alpha = (p2a - p0a) % (2 * math.pi) if (p0a < p2a and (p1a < p0a or p2a < p1a)) or (p2a < p1a < p0a): alpha = -2 * math.pi + alpha if abs(R.x) > 1000000 or abs(R.y) > 1000000 or (R - P0).mag() < .1: return None, None else: return R, alpha R1, a1 = calculate_arc_params(P0, P1, P2) R2, a2 = calculate_arc_params(P2, P3, P4) if R1 == None or R2 == None or (R1 - P0).mag() < straight_tolerance or ( R2 - P2).mag() < straight_tolerance: return [[sp1[1], 'line', 0, 0, sp2[1], [z1, z2]]] d = csp_to_arc_distance(sp1, sp2, [P0, P2, R1, a1], [P2, P4, R2, a2]) if d > 1 and depth < options.biarc_max_split_depth: return biarc_split(sp1, sp2, z1, z2, depth) else: if R2.mag() * a2 == 0: zm = z2 else: zm = z1 + (z2 - z1) * (abs(R1.mag() * a1)) / (abs(R2.mag() * a2) + abs(R1.mag() * a1)) return [[sp1[1], 'arc', [R1.x, R1.y], a1, [P2.x, P2.y], [z1, zm]], [[P2.x, P2.y], 'arc', [R2.x, R2.y], a2, [P4.x, P4.y], [zm, z2]]] ################################################################################ # Polygon class ################################################################################ class Polygon: def __init__(self, polygon=None): self.polygon = [] if polygon == None else polygon[:] def add(self, add): if type(add) == type([]): self.polygon += add[:] else: self.polygon += add.polygon[:] class ArrangementGenetic: # gene = [fittness, order, rotation, xposition] # spieces = [gene]*shapes count # population = [spieces] def __init__(self, polygons, material_width): self.population = [] self.genes_count = len(polygons) self.polygons = polygons self.width = material_width self.mutation_factor = 0.1 self.order_mutate_factor = 1. self.move_mutate_factor = 1. ################################################################################ ### ### Gcodetools class ### ################################################################################ class LaserGcode(inkex.Effect): def export_gcode(self, gcode): gcode_pass = gcode for x in range(1, self.options.passes): gcode += "G91\nG1 Z-" + self.options.pass_depth + "\nG90\n" + gcode_pass f = open(self.options.directory + self.options.file, "w") f.write( self.options.laser_off_command + " S0" + "\n" + self.header + "G1 F" + self.options.travel_speed + "\n" + gcode + self.footer) f.close() def add_arguments_old(self): add_option = self.OptionParser.add_option for arg in self.arguments: # Stringify add_option arguments action = arg["action"] if "action" in arg else "store" arg_type = {str: "str", int: "int", bool: "inkbool"}[arg["type"]] default = arg["type"](arg["default"]) add_option("", arg["name"], action=action, type=arg_type, dest=arg["dest"], default=default, help=arg["help"]) def add_arguments_new(self): add_argument = self.arg_parser.add_argument for arg in self.arguments: # Not using kwargs unpacking for clarity, flexibility and constancy with add_arguments_old action = arg["action"] if "action" in arg else "store" add_argument(arg["name"], action=action, type=arg["type"], dest=arg["dest"], default=arg["default"], help=arg["help"]) def __init__(self): inkex.Effect.__init__(self) # Define command line arguments, inkex will use these to interface with the GUI defined in laser.ini self.arguments = [ {"name": "--directory", "type": str, "dest": "directory", "default": "", "help": "Output directory"}, {"name": "--filename", "type": str, "dest": "file", "default": "output.gcode", "help": "File name"}, {"name": "--add-numeric-suffix-to-filename", "type": inkex.Boolean, "dest": "add_numeric_suffix_to_filename", "default": False, "help": "Add numeric suffix to file name"}, {"name": "--laser-command", "type": str, "dest": "laser_command", "default": "M03", "help": "Laser gcode command"}, {"name": "--laser-off-command", "type": str, "dest": "laser_off_command", "default": "M05", "help": "Laser gcode end command"}, {"name": "--laser-speed", "type": int, "dest": "laser_speed", "default": 750, "help": "Laser speed (mm/min},"}, {"name": "--travel-speed", "type": str, "dest": "travel_speed", "default": "3000", "help": "Travel speed (mm/min},"}, {"name": "--laser-power", "type": int, "dest": "laser_power", "default": 255, "help": "S# is 256 or 10000 for full power"}, {"name": "--passes", "type": int, "dest": "passes", "default": 1, "help": "Quantity of passes"}, {"name": "--pass-depth", "type": str, "dest": "pass_depth", "default": 1, "help": "Depth of laser cut"}, {"name": "--power-delay", "type": str, "dest": "power_delay", "default": "0", "help": "Laser power-on delay (ms},"}, {"name": "--suppress-all-messages", "type": inkex.Boolean, "dest": "suppress_all_messages", "default": True, "help": "Hide messages during g-code generation"}, {"name": "--create-log", "type": bool, "dest": "log_create_log", "default": False, "help": "Create log files"}, {"name": "--log-filename", "type": str, "dest": "log_filename", "default": '', "help": "Create log files"}, {"name": "--engraving-draw-calculation-paths", "type": inkex.Boolean, "dest": "engraving_draw_calculation_paths", "default": False, "help": "Draw additional graphics to debug engraving path"}, {"name": "--unit", "type": str, "dest": "unit", "default": "G21 (All units in mm},", "help": "Units either mm or inches"}, {"name": "--active-tab", "type": str, "dest": "active_tab", "default": "", "help": "Defines which tab is active"}, {"name": "--biarc-max-split-depth", "type": int, "dest": "biarc_max_split_depth", "default": "4", "help": "Defines maximum depth of splitting while approximating using biarcs."} ] if target_version < 1.0: self.add_arguments_old() else: self.add_arguments_new() # Another hack to maintain support across different Inkscape versions if target_version < 1.0: self.selected_hack = self.selected else: self.selected_hack = self.svg.selected def parse_curve(self, p, layer, w=None, f=None): c = [] if len(p) == 0: return [] p = self.transform_csp(p, layer) # Sort to reduce Rapid distance k = list(range(1, len(p))) keys = [0] while len(k) > 0: end = p[keys[-1]][-1][1] dist = (float('-inf'), float('-inf')) for i in range(len(k)): start = p[k[i]][0][1] dist = max((-((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2), i), dist) keys += [k[dist[1]]] del k[dist[1]] for k in keys: subpath = p[k] c += [[[subpath[0][1][0], subpath[0][1][1]], 'move', 0, 0]] for i in range(1, len(subpath)): sp1 = [[subpath[i - 1][j][0], subpath[i - 1][j][1]] for j in range(3)] sp2 = [[subpath[i][j][0], subpath[i][j][1]] for j in range(3)] c += biarc(sp1, sp2, 0, 0) if w == None else biarc(sp1, sp2, -f(w[k][i - 1]), -f(w[k][i])) # l1 = biarc(sp1,sp2,0,0) if w==None else biarc(sp1,sp2,-f(w[k][i-1]),-f(w[k][i])) # print_((-f(w[k][i-1]),-f(w[k][i]), [i1[5] for i1 in l1]) ) c += [[[subpath[-1][1][0], subpath[-1][1][1]], 'end', 0, 0]] print_("Curve: " + str(c)) return c def draw_curve(self, curve, layer, group=None, style=styles["biarc_style"]): self.get_defs() # Add marker to defs if it does not exist if "DrawCurveMarker" not in self.defs: defs = etree.SubElement(self.document.getroot(), inkex.addNS("defs", "svg")) marker = etree.SubElement(defs, inkex.addNS("marker", "svg"), {"id": "DrawCurveMarker", "orient": "auto", "refX": "-8", "refY": "-2.41063", "style": "overflow:visible"}) etree.SubElement(marker, inkex.addNS("path", "svg"), { "d": "m -6.55552,-2.41063 0,0 L -13.11104,0 c 1.0473,-1.42323 1.04126,-3.37047 0,-4.82126", "style": "fill:#000044; fill-rule:evenodd;stroke-width:0.62500000;stroke-linejoin:round;"} ) if "DrawCurveMarker_r" not in self.defs: defs = etree.SubElement(self.document.getroot(), inkex.addNS("defs", "svg")) marker = etree.SubElement(defs, inkex.addNS("marker", "svg"), {"id": "DrawCurveMarker_r", "orient": "auto", "refX": "8", "refY": "-2.41063", "style": "overflow:visible"}) etree.SubElement(marker, inkex.addNS("path", "svg"), { "d": "m 6.55552,-2.41063 0,0 L 13.11104,0 c -1.0473,-1.42323 -1.04126,-3.37047 0,-4.82126", "style": "fill:#000044; fill-rule:evenodd;stroke-width:0.62500000;stroke-linejoin:round;"} ) for i in [0, 1]: style['biarc%s_r' % i] = simplestyle.parseStyle(style['biarc%s' % i]) style['biarc%s_r' % i]["marker-start"] = "url(#DrawCurveMarker_r)" del (style['biarc%s_r' % i]["marker-end"]) style['biarc%s_r' % i] = simplestyle.formatStyle(style['biarc%s_r' % i]) if group is None: group = etree.SubElement(self.layers[min(1, len(self.layers) - 1)], inkex.addNS('g', 'svg'), {"gcodetools": "Preview group"}) s, arcn = '', 0 a, b, c = [0., 0.], [1., 0.], [0., 1.] k = (b[0] - a[0]) * (c[1] - a[1]) - (c[0] - a[0]) * (b[1] - a[1]) a, b, c = self.transform(a, layer, True), self.transform(b, layer, True), self.transform(c, layer, True) if ((b[0] - a[0]) * (c[1] - a[1]) - (c[0] - a[0]) * (b[1] - a[1])) * k > 0: reverse_angle = 1 else: reverse_angle = -1 for sk in curve: si = sk[:] si[0], si[2] = self.transform(si[0], layer, True), ( self.transform(si[2], layer, True) if type(si[2]) == type([]) and len(si[2]) == 2 else si[2]) if s != '': if s[1] == 'line': etree.SubElement(group, inkex.addNS('path', 'svg'), { 'style': style['line'], 'd': 'M %s,%s L %s,%s' % (s[0][0], s[0][1], si[0][0], si[0][1]), "gcodetools": "Preview", } ) elif s[1] == 'arc': arcn += 1 sp = s[0] c = s[2] s[3] = s[3] * reverse_angle a = ((P(si[0]) - P(c)).angle() - (P(s[0]) - P(c)).angle()) % math.pi2 # s[3] if s[3] * a < 0: if a > 0: a = a - math.pi2 else: a = math.pi2 + a r = math.sqrt((sp[0] - c[0]) ** 2 + (sp[1] - c[1]) ** 2) a_st = (math.atan2(sp[0] - c[0], - (sp[1] - c[1])) - math.pi / 2) % (math.pi * 2) st = style['biarc%s' % (arcn % 2)][:] if a > 0: a_end = a_st + a st = style['biarc%s' % (arcn % 2)] else: a_end = a_st * 1 a_st = a_st + a st = style['biarc%s_r' % (arcn % 2)] etree.SubElement(group, inkex.addNS('path', 'svg'), { 'style': st, inkex.addNS('cx', 'sodipodi'): str(c[0]), inkex.addNS('cy', 'sodipodi'): str(c[1]), inkex.addNS('rx', 'sodipodi'): str(r), inkex.addNS('ry', 'sodipodi'): str(r), inkex.addNS('start', 'sodipodi'): str(a_st), inkex.addNS('end', 'sodipodi'): str(a_end), inkex.addNS('open', 'sodipodi'): 'true', inkex.addNS('type', 'sodipodi'): 'arc', "gcodetools": "Preview", }) s = si def check_dir(self): if self.options.directory[-1] not in ["/", "\\"]: if "\\" in self.options.directory: self.options.directory += "\\" else: self.options.directory += "/" print_("Checking direcrory: '%s'" % self.options.directory) if (os.path.isdir(self.options.directory)): if (os.path.isfile(self.options.directory + 'header')): f = open(self.options.directory + 'header', 'r') self.header = f.read() f.close() else: self.header = defaults['header'] if (os.path.isfile(self.options.directory + 'footer')): f = open(self.options.directory + 'footer', 'r') self.footer = f.read() f.close() else: self.footer = defaults['footer'] if self.options.unit == "G21 (All units in mm)": self.header += "G21\n" elif self.options.unit == "G20 (All units in inches)": self.header += "G20\n" else: self.error(_("Directory does not exist! Please specify existing directory at options tab!"), "error") return False if self.options.add_numeric_suffix_to_filename: dir_list = os.listdir(self.options.directory) if "." in self.options.file: r = re.match(r"^(.*)(\..*)$", self.options.file) ext = r.group(2) name = r.group(1) else: ext = "" name = self.options.file max_n = 0 for s in dir_list: r = re.match(r"^%s_0*(\d+)%s$" % (re.escape(name), re.escape(ext)), s) if r: max_n = max(max_n, int(r.group(1))) filename = name + "_" + ("0" * (4 - len(str(max_n + 1))) + str(max_n + 1)) + ext self.options.file = filename print_("Testing writing rights on '%s'" % (self.options.directory + self.options.file)) try: f = open(self.options.directory + self.options.file, "w") f.close() except: self.error(_("Can not write to specified file!\n%s" % (self.options.directory + self.options.file)), "error") return False return True ################################################################################ # # Generate Gcode # # Curve definition # [start point, type = {'arc','line','move','end'}, arc center, arc angle, end point, [zstart, zend]] # ################################################################################ def generate_gcode(self, curve, layer, depth): tool = self.tools print_("Tool in g-code generator: " + str(tool)) def c(c): c = [c[i] if i < len(c) else None for i in range(6)] if c[5] == 0: c[5] = None s = [" X", " Y", " Z", " I", " J", " K"] r = '' for i in range(6): if c[i] != None: r += s[i] + ("%f" % (round(c[i], 4))).rstrip('0') return r if len(curve) == 0: return "" try: self.last_used_tool == None except: self.last_used_tool = None print_("working on curve") print_("Curve: " + str(curve)) g = "" lg, f = 'G00', "F%f" % tool['penetration feed'] penetration_feed = "F%s" % tool['penetration feed'] current_a = 0 for i in range(1, len(curve)): # Creating Gcode for curve between s=curve[i-1] and si=curve[i] start at s[0] end at s[4]=si[0] s, si = curve[i - 1], curve[i] feed = f if lg not in ['G01', 'G02', 'G03'] else '' if s[1] == 'move': g += "G1 " + c(si[0]) + "\n" + tool['gcode before path'] + "\n" lg = 'G00' elif s[1] == 'end': g += tool['gcode after path'] + "\n" lg = 'G00' elif s[1] == 'line': if lg == "G00": g += "G1 " + feed + "\n" g += "G1 " + c(si[0]) + "\n" lg = 'G01' elif s[1] == 'arc': r = [(s[2][0] - s[0][0]), (s[2][1] - s[0][1])] if lg == "G00": g += "G1 " + feed + "\n" if (r[0] ** 2 + r[1] ** 2) > .1: r1, r2 = (P(s[0]) - P(s[2])), (P(si[0]) - P(s[2])) if abs(r1.mag() - r2.mag()) < 0.001: g += ("G2" if s[3] < 0 else "G3") + c( si[0] + [None, (s[2][0] - s[0][0]), (s[2][1] - s[0][1])]) + "\n" else: r = (r1.mag() + r2.mag()) / 2 g += ("G2" if s[3] < 0 else "G3") + c(si[0]) + " R%f" % (r) + "\n" lg = 'G02' else: g += "G1 " + c(si[0]) + " " + feed + "\n" lg = 'G01' if si[1] == 'end': g += tool['gcode after path'] + "\n" return g def get_transforms(self, g): root = self.document.getroot() trans = [] while (g != root): if 'transform' in list(g.keys()): t = g.get('transform') t = simpletransform.parseTransform(t) trans = simpletransform.composeTransform(t, trans) if trans != [] else t print_(trans) g = g.getparent() return trans def apply_transforms(self, g, csp): trans = self.get_transforms(g) if trans != []: simpletransform.applyTransformToPath(trans, csp) return csp def transform(self, source_point, layer, reverse=False): if layer == None: layer = self.current_layer if self.current_layer is not None else self.document.getroot() if layer not in self.transform_matrix: for i in range(self.layers.index(layer), -1, -1): if self.layers[i] in self.orientation_points: break print_(str(self.layers)) print_(str("I: " + str(i))) print_("Transform: " + str(self.layers[i])) if self.layers[i] not in self.orientation_points: self.error(_( "Orientation points for '%s' layer have not been found! Please add orientation points using Orientation tab!") % layer.get( inkex.addNS('label', 'inkscape')), "no_orientation_points") elif self.layers[i] in self.transform_matrix: self.transform_matrix[layer] = self.transform_matrix[self.layers[i]] else: orientation_layer = self.layers[i] if len(self.orientation_points[orientation_layer]) > 1: self.error( _("There are more than one orientation point groups in '%s' layer") % orientation_layer.get( inkex.addNS('label', 'inkscape')), "more_than_one_orientation_point_groups") points = self.orientation_points[orientation_layer][0] if len(points) == 2: points += [[[(points[1][0][1] - points[0][0][1]) + points[0][0][0], -(points[1][0][0] - points[0][0][0]) + points[0][0][1]], [-(points[1][1][1] - points[0][1][1]) + points[0][1][0], points[1][1][0] - points[0][1][0] + points[0][1][1]]]] if len(points) == 3: print_("Layer '%s' Orientation points: " % orientation_layer.get(inkex.addNS('label', 'inkscape'))) for point in points: print_(point) # Zcoordinates definition taken from Orientatnion point 1 and 2 self.Zcoordinates[layer] = [max(points[0][1][2], points[1][1][2]), min(points[0][1][2], points[1][1][2])] matrix = numpy.array([ [points[0][0][0], points[0][0][1], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, points[0][0][0], points[0][0][1], 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, points[0][0][0], points[0][0][1], 1], [points[1][0][0], points[1][0][1], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, points[1][0][0], points[1][0][1], 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, points[1][0][0], points[1][0][1], 1], [points[2][0][0], points[2][0][1], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, points[2][0][0], points[2][0][1], 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, points[2][0][0], points[2][0][1], 1] ]) if numpy.linalg.det(matrix) != 0: m = numpy.linalg.solve(matrix, numpy.array( [[points[0][1][0]], [points[0][1][1]], [1], [points[1][1][0]], [points[1][1][1]], [1], [points[2][1][0]], [points[2][1][1]], [1]] ) ).tolist() self.transform_matrix[layer] = [[m[j * 3 + i][0] for i in range(3)] for j in range(3)] else: self.error(_( "Orientation points are wrong! (if there are two orientation points they sould not be the same. If there are three orientation points they should not be in a straight line.)"), "wrong_orientation_points") else: self.error(_( "Orientation points are wrong! (if there are two orientation points they sould not be the same. If there are three orientation points they should not be in a straight line.)"), "wrong_orientation_points") self.transform_matrix_reverse[layer] = numpy.linalg.inv(self.transform_matrix[layer]).tolist() print_("\n Layer '%s' transformation matrixes:" % layer.get(inkex.addNS('label', 'inkscape'))) print_(self.transform_matrix) print_(self.transform_matrix_reverse) # Zautoscale is absolute self.Zauto_scale[layer] = 1 print_("Z automatic scale = %s (computed according orientation points)" % self.Zauto_scale[layer]) x, y = source_point[0], source_point[1] if not reverse: t = self.transform_matrix[layer] else: t = self.transform_matrix_reverse[layer] return [t[0][0] * x + t[0][1] * y + t[0][2], t[1][0] * x + t[1][1] * y + t[1][2]] def transform_csp(self, csp_, layer, reverse=False): csp = [[[csp_[i][j][0][:], csp_[i][j][1][:], csp_[i][j][2][:]] for j in range(len(csp_[i]))] for i in range(len(csp_))] for i in range(len(csp)): for j in range(len(csp[i])): for k in range(len(csp[i][j])): csp[i][j][k] = self.transform(csp[i][j][k], layer, reverse) return csp ################################################################################ # Errors handling function, notes are just printed into Logfile, # warnings are printed into log file and warning message is displayed but # extension continues working, errors causes log and execution is halted # Notes, warnings adn errors could be assigned to space or comma or dot # sepparated strings (case is ignoreg). ################################################################################ def error(self, s, type_="Warning"): notes = "Note " warnings = """ Warning tools_warning bad_orientation_points_in_some_layers more_than_one_orientation_point_groups more_than_one_tool orientation_have_not_been_defined tool_have_not_been_defined selection_does_not_contain_paths selection_does_not_contain_paths_will_take_all selection_is_empty_will_comupe_drawing selection_contains_objects_that_are_not_paths """ errors = """ Error wrong_orientation_points area_tools_diameter_error no_tool_error active_layer_already_has_tool active_layer_already_has_orientation_points """ if type_.lower() in re.split("[\s\n,\.]+", errors.lower()): print_(s) inkex.errormsg(s + "\n") sys.exit() elif type_.lower() in re.split("[\s\n,\.]+", warnings.lower()): print_(s) if not self.options.suppress_all_messages: inkex.errormsg(s + "\n") elif type_.lower() in re.split("[\s\n,\.]+", notes.lower()): print_(s) else: print_(s) inkex.errormsg(s) sys.exit() ################################################################################ # Get defs from svg ################################################################################ def get_defs(self): self.defs = {} def recursive(g): for i in g: if i.tag == inkex.addNS("defs", "svg"): for j in i: self.defs[j.get("id")] = i if i.tag == inkex.addNS("g", 'svg'): recursive(i) recursive(self.document.getroot()) ################################################################################ # # Get Gcodetools info from the svg # ################################################################################ def get_info(self): self.selected_paths = {} self.paths = {} self.orientation_points = {} self.layers = [self.document.getroot()] self.Zcoordinates = {} self.transform_matrix = {} self.transform_matrix_reverse = {} self.Zauto_scale = {} def recursive_search(g, layer, selected=False): items = g.getchildren() items.reverse() for i in items: if selected: self.selected_hack[i.get("id")] = i if i.tag == inkex.addNS("g", 'svg') and i.get(inkex.addNS('groupmode', 'inkscape')) == 'layer': self.layers += [i] recursive_search(i, i) elif i.get('gcodetools') == "Gcodetools orientation group": points = self.get_orientation_points(i) if points != None: self.orientation_points[layer] = self.orientation_points[layer] + [ points[:]] if layer in self.orientation_points else [points[:]] print_("Found orientation points in '%s' layer: %s" % ( layer.get(inkex.addNS('label', 'inkscape')), points)) else: self.error(_( "Warning! Found bad orientation points in '%s' layer. Resulting Gcode could be corrupt!") % layer.get( inkex.addNS('label', 'inkscape')), "bad_orientation_points_in_some_layers") elif i.tag == inkex.addNS('path', 'svg'): if "gcodetools" not in list(i.keys()): self.paths[layer] = self.paths[layer] + [i] if layer in self.paths else [i] if i.get("id") in self.selected_hack: self.selected_paths[layer] = self.selected_paths[layer] + [ i] if layer in self.selected_paths else [i] elif i.tag == inkex.addNS("g", 'svg'): recursive_search(i, layer, (i.get("id") in self.selected_hack)) elif i.get("id") in self.selected_hack: self.error(_( "This extension works with Paths and Dynamic Offsets and groups of them only! All other objects will be ignored!\nSolution 1: press Path->Object to path or Shift+Ctrl+C.\nSolution 2: Path->Dynamic offset or Ctrl+J.\nSolution 3: export all contours to PostScript level 2 (File->Save As->.ps) and File->Import this file."), "selection_contains_objects_that_are_not_paths") recursive_search(self.document.getroot(), self.document.getroot()) def get_orientation_points(self, g): items = g.getchildren() items.reverse() p2, p3 = [], [] p = None for i in items: if i.tag == inkex.addNS("g", 'svg') and i.get("gcodetools") == "Gcodetools orientation point (2 points)": p2 += [i] if i.tag == inkex.addNS("g", 'svg') and i.get("gcodetools") == "Gcodetools orientation point (3 points)": p3 += [i] if len(p2) == 2: p = p2 elif len(p3) == 3: p = p3 if p == None: return None points = [] for i in p: point = [[], []] for node in i: if node.get('gcodetools') == "Gcodetools orientation point arrow": point[0] = self.apply_transforms(node, parsePath(node.get("d")))[0][0][1] if node.get('gcodetools') == "Gcodetools orientation point text": r = re.match( r'(?i)\s*\(\s*(-?\s*\d*(?:,|\.)*\d*)\s*;\s*(-?\s*\d*(?:,|\.)*\d*)\s*;\s*(-?\s*\d*(?:,|\.)*\d*)\s*\)\s*', node.text) point[1] = [float(r.group(1)), float(r.group(2)), float(r.group(3))] if point[0] != [] and point[1] != []: points += [point] if len(points) == len(p2) == 2 or len(points) == len(p3) == 3: return points else: return None ################################################################################ # # dxfpoints # ################################################################################ def dxfpoints(self): if self.selected_paths == {}: self.error(_( "Noting is selected. Please select something to convert to drill point (dxfpoint) or clear point sign."), "warning") for layer in self.layers: if layer in self.selected_paths: for path in self.selected_paths[layer]: if self.options.dxfpoints_action == 'replace': path.set("dxfpoint", "1") r = re.match("^\s*.\s*(\S+)", path.get("d")) if r != None: print_(("got path=", r.group(1))) path.set("d", "m %s 2.9375,-6.343750000001 0.8125,1.90625 6.843748640396,-6.84374864039 0,0 0.6875,0.6875 -6.84375,6.84375 1.90625,0.812500000001 z" % r.group( 1)) path.set("style", styles["dxf_points"]) if self.options.dxfpoints_action == 'save': path.set("dxfpoint", "1") if self.options.dxfpoints_action == 'clear' and path.get("dxfpoint") == "1": path.set("dxfpoint", "0") ################################################################################ # # Laser # ################################################################################ def laser(self): def get_boundaries(points): minx, miny, maxx, maxy = None, None, None, None out = [[], [], [], []] for p in points: if minx == p[0]: out[0] += [p] if minx == None or p[0] < minx: minx = p[0] out[0] = [p] if miny == p[1]: out[1] += [p] if miny == None or p[1] < miny: miny = p[1] out[1] = [p] if maxx == p[0]: out[2] += [p] if maxx == None or p[0] > maxx: maxx = p[0] out[2] = [p] if maxy == p[1]: out[3] += [p] if maxy == None or p[1] > maxy: maxy = p[1] out[3] = [p] return out def remove_duplicates(points): i = 0 out = [] for p in points: for j in range(i, len(points)): if p == points[j]: points[j] = [None, None] if p != [None, None]: out += [p] i += 1 return (out) def get_way_len(points): l = 0 for i in range(1, len(points)): l += math.sqrt((points[i][0] - points[i - 1][0]) ** 2 + (points[i][1] - points[i - 1][1]) ** 2) return l def sort_dxfpoints(points): points = remove_duplicates(points) ways = [ # l=0, d=1, r=2, u=3 [3, 0], # ul [3, 2], # ur [1, 0], # dl [1, 2], # dr [0, 3], # lu [0, 1], # ld [2, 3], # ru [2, 1], # rd ] minimal_way = [] minimal_len = None minimal_way_type = None for w in ways: tpoints = points[:] cw = [] for j in range(0, len(points)): p = get_boundaries(get_boundaries(tpoints)[w[0]])[w[1]] tpoints.remove(p[0]) cw += p curlen = get_way_len(cw) if minimal_len == None or curlen < minimal_len: minimal_len = curlen minimal_way = cw minimal_way_type = w return minimal_way if self.selected_paths == {}: paths = self.paths self.error(_("No paths are selected! Trying to work on all available paths."), "warning") else: paths = self.selected_paths self.check_dir() gcode = "" biarc_group = etree.SubElement( list(self.selected_paths.keys())[0] if len(list(self.selected_paths.keys())) > 0 else self.layers[0], inkex.addNS('g', 'svg')) print_(("self.layers=", self.layers)) print_(("paths=", paths)) for layer in self.layers: if layer in paths: print_(("layer", layer)) p = [] dxfpoints = [] for path in paths[layer]: print_(str(layer)) if "d" not in list(path.keys()): self.error(_( "Warning: One or more paths dont have 'd' parameter, try to Ungroup (Ctrl+Shift+G) and Object to Path (Ctrl+Shift+C)!"), "selection_contains_objects_that_are_not_paths") continue csp = parsePath(path.get("d")) csp = self.apply_transforms(path, csp) if path.get("dxfpoint") == "1": tmp_curve = self.transform_csp(csp, layer) x = tmp_curve[0][0][0][0] y = tmp_curve[0][0][0][1] print_("got dxfpoint (scaled) at (%f,%f)" % (x, y)) dxfpoints += [[x, y]] else: p += csp dxfpoints = sort_dxfpoints(dxfpoints) curve = self.parse_curve(p, layer) self.draw_curve(curve, layer, biarc_group) gcode += self.generate_gcode(curve, layer, 0) self.export_gcode(gcode) ################################################################################ # # Orientation # ################################################################################ def orientation(self, layer=None): print_("entering orientations") if layer == None: layer = self.current_layer if self.current_layer is not None else self.document.getroot() if layer in self.orientation_points: self.error(_("Active layer already has orientation points! Remove them or select another layer!"), "active_layer_already_has_orientation_points") orientation_group = etree.SubElement(layer, inkex.addNS('g', 'svg'), {"gcodetools": "Gcodetools orientation group"}) # translate == ['0', '-917.7043'] if layer.get("transform") != None: translate = layer.get("transform").replace("translate(", "").replace(")", "").split(",") else: translate = [0, 0] # doc height in pixels (38 mm == 143.62204724px) doc_height = self.svg.unittouu(self.document.getroot().xpath('@height', namespaces=inkex.NSS)[0]) if self.document.getroot().get('height') == "100%": doc_height = 1052.3622047 print_("Overriding height from 100 percents to %s" % doc_height) print_("Document height: " + str(doc_height)); if self.options.unit == "G21 (All units in mm)": points = [[0., 0., 0.], [100., 0., 0.], [0., 100., 0.]] orientation_scale = 1 print_("orientation_scale < 0 ===> switching to mm units=%0.10f" % orientation_scale) elif self.options.unit == "G20 (All units in inches)": points = [[0., 0., 0.], [5., 0., 0.], [0., 5., 0.]] orientation_scale = 90 print_("orientation_scale < 0 ===> switching to inches units=%0.10f" % orientation_scale) points = points[:2] print_(("using orientation scale", orientation_scale, "i=", points)) for i in points: # X == Correct! # si == x,y coordinate in px # si have correct coordinates # if layer have any transform it will be in translate so lets add that si = [i[0] * orientation_scale, (i[1] * orientation_scale) + float(translate[1])] g = etree.SubElement(orientation_group, inkex.addNS('g', 'svg'), {'gcodetools': "Gcodetools orientation point (2 points)"}) etree.SubElement(g, inkex.addNS('path', 'svg'), { 'style': "stroke:none;fill:#000000;", 'd': 'm %s,%s 2.9375,-6.343750000001 0.8125,1.90625 6.843748640396,-6.84374864039 0,0 0.6875,0.6875 -6.84375,6.84375 1.90625,0.812500000001 z z' % ( si[0], -si[1] + doc_height), 'gcodetools': "Gcodetools orientation point arrow" }) t = etree.SubElement(g, inkex.addNS('text', 'svg'), { 'style': "font-size:10px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;fill:#000000;fill-opacity:1;stroke:none;", inkex.addNS("space", "xml"): "preserve", 'x': str(si[0] + 10), 'y': str(-si[1] - 10 + doc_height), 'gcodetools': "Gcodetools orientation point text" }) t.text = "(%s; %s; %s)" % (i[0], i[1], i[2]) ################################################################################ # # Effect # # Main function of Gcodetools class # ################################################################################ def effect(self): global options options = self.options options.self = self options.doc_root = self.document.getroot() # define print_ function global print_ if self.options.log_create_log: try: if os.path.isfile(self.options.log_filename): os.remove(self.options.log_filename) f = open(self.options.log_filename, "a") f.write("Gcodetools log file.\nStarted at %s.\n%s\n" % ( time.strftime("%d.%m.%Y %H:%M:%S"), options.log_filename)) f.write("%s tab is active.\n" % self.options.active_tab) f.close() except: print_ = lambda *x: None else: print_ = lambda *x: None self.get_info() if self.orientation_points == {}: self.error(_( "Orientation points have not been defined! A default set of orientation points has been automatically added."), "warning") self.orientation(self.layers[min(0, len(self.layers) - 1)]) self.get_info() self.tools = { "name": "Laser Engraver", "id": "Laser Engraver", "penetration feed": self.options.laser_speed, "feed": self.options.laser_speed, "gcode before path": ("G4 P0 \n" + self.options.laser_command + " S" + str( int(self.options.laser_power)) + "\nG4 P" + self.options.power_delay), "gcode after path": ( "G4 P0 \n" + self.options.laser_off_command + " S0" + "\n" + "G1 F" + self.options.travel_speed), } self.get_info() self.laser() e = LaserGcode() if target_version < 1.0: e.affect() else: e.run()