#!/usr/bin/env python3 # Based on gearUtils-03.js by Dr A.R.Collins # Latest version: <www.arc.id.au/gearDrawing.html> # Calculation of Bezier coefficients for # Higuchi et al. approximation to an involute. # ref: YNU Digital Eng Lab Memorandum 05-1 from math import * def rotate(p, t): return (p[0] * cos(t) - p[1] * sin(t), p[0] * sin(t) + p[1] * cos(t)) def SVG_move(p, t): pp = rotate(p, t) return 'M ' + str(pp[0]) + ',' + str(pp[1]) + '\n' def SVG_line(p, t): pp = rotate(p, t) return 'L ' + str(pp[0]) + ',' + str(pp[1]) + '\n' def SVG_circle(p, r, sweep, t): pp = rotate(p, t) return 'A ' + str(r) + ',' + str(r) + ' 0 0,' + str(sweep) + ' ' + str(pp[0]) + ',' + str(pp[1]) + '\n' def SVG_curve(p, c1, c2, t): pp = rotate(p, t) c1p = rotate(c1, t) c2p = rotate(c2, t) return 'C ' + str(pp[0]) + ',' + str(pp[1]) + ' ' + str(c1p[0]) + ',' + str(c1p[1]) + ' ' + str(c2p[0]) + ',' + str(c2p[1]) + '\n' def SVG_curve2(p1, c11, c12, p2, c21, c22, t): p1p = rotate(p1, t) c11p = rotate(c11, t) c12p = rotate(c12, t) p2p = rotate(p2, t) c21p = rotate(c21, t) c22p = rotate(c22, t) return 'C ' + str(p1p[0]) + ',' + str(p1p[1]) + ' ' + str(c11p[0]) + ',' + str(c11p[1]) + ' ' + str(c12p[0]) + ',' + str(c12p[1]) + ' ' + str(p2p[0]) + ',' + str(p2p[1]) + ' ' + str(c21p[0]) + ',' + str(c21p[1]) + ' ' + str(c22p[0]) + ',' + str(c22p[1]) + '\n' def SVG_close(): return 'Z\n' def genInvolutePolar(Rb, R): # Rb = base circle radius # returns the involute angle as function of radius R. return (sqrt(R*R - Rb*Rb) / Rb) - acos(Rb / R) def rotate(pt, rads): # rotate pt by rads radians about origin sinA = sin(rads) cosA = cos(rads) return [pt[0] * cosA - pt[1] * sinA, pt[0] * sinA + pt[1] * cosA] def toCartesian(radius, angle): # convert polar coords to cartesian return [radius * cos(angle), radius * sin(angle)] def CreateExternalGear(m, Z, phi): # ****** external gear specifications addendum = m # distance from pitch circle to tip circle dedendum = 1.25 * m # pitch circle to root, sets clearance clearance = dedendum - addendum # Calculate radii Rpitch = Z * m / 2 # pitch circle radius Rb = Rpitch*cos(phi * pi / 180) # base circle radius Ra = Rpitch + addendum # tip (addendum) circle radius Rroot = Rpitch - dedendum # root circle radius fRad = 1.5 * clearance # fillet radius, max 1.5*clearance Rf = sqrt((Rroot + fRad) * (Rroot + fRad) - (fRad * fRad)) # radius at top of fillet if (Rb < Rf): Rf = Rroot + clearance # ****** calculate angles (all in radians) pitchAngle = 2 * pi / Z # angle subtended by whole tooth (rads) baseToPitchAngle = genInvolutePolar(Rb, Rpitch) pitchToFilletAngle = baseToPitchAngle # profile starts at base circle if (Rf > Rb): # start profile at top of fillet (if its greater) pitchToFilletAngle -= genInvolutePolar(Rb, Rf) filletAngle = atan(fRad / (fRad + Rroot)) # radians # ****** generate Higuchi involute approximation fe = 1 # fraction of profile length at end of approx fs = 0.01 # fraction of length offset from base to avoid singularity if (Rf > Rb): fs = (Rf * Rf - Rb * Rb) / (Ra * Ra - Rb * Rb) # offset start to top of fillet # approximate in 2 sections, split 25% along the involute fm = fs + (fe - fs) / 4 # fraction of length at junction (25% along profile) dedBez = BezCoeffs(m, Z, phi, 3, fs, fm) addBez = BezCoeffs(m, Z, phi, 3, fm, fe) dedInv = dedBez.involuteBezCoeffs() addInv = addBez.involuteBezCoeffs() # join the 2 sets of coeffs (skip duplicate mid point) inv = dedInv + addInv[1:] # create the back profile of tooth (mirror image) invR = [0 for i in range(0, len(inv))] # involute profile along back of tooth for i in range(0, len(inv)): # rotate all points to put pitch point at y = 0 pt = rotate(inv[i], -baseToPitchAngle - pitchAngle / 4) inv[i] = pt # generate the back of tooth profile nodes, mirror coords in X axis invR[i] = [pt[0], -pt[1]] # ****** calculate section junction points R=back of tooth, Next=front of next tooth) fillet = toCartesian(Rf, -pitchAngle / 4 - pitchToFilletAngle) # top of fillet filletR = [fillet[0], -fillet[1]] # flip to make same point on back of tooth rootR = toCartesian(Rroot, pitchAngle / 4 + pitchToFilletAngle + filletAngle) rootNext = toCartesian(Rroot, 3 * pitchAngle / 4 - pitchToFilletAngle - filletAngle) filletNext = rotate(fillet, pitchAngle) # top of fillet, front of next tooth # Draw the shapes in SVG t_inc = 2.0 * pi / float(Z) thetas = [(x * t_inc) for x in range(Z)] svg = SVG_move(fillet, 0) # start at top of fillet for theta in thetas: if (Rf < Rb): svg += SVG_line(inv[0], theta) # line from fillet up to base circle svg += SVG_curve2(inv[1], inv[2], inv[3], inv[4], inv[5], inv[6], theta) svg += SVG_circle(invR[6], Ra, 1, theta) # arc across addendum circle # svg = SVG_move(invR[6]) # TEMP svg += SVG_curve2(invR[5], invR[4], invR[3], invR[2], invR[1], invR[0], theta) if (Rf < Rb): svg += SVG_line(filletR, theta) # line down to topof fillet if (rootNext[1] > rootR[1]): # is there a section of root circle between fillets? svg += SVG_circle(rootR, fRad, 0, theta) # back fillet svg += SVG_circle(rootNext, Rroot, 1, theta) # root circle arc svg += SVG_circle(filletNext, fRad, 0, theta) svg += SVG_close() return svg def CreateInternalGear(m, Z, phi): addendum = 0.6 * m # pitch circle to tip circle (ref G.M.Maitra) dedendum = 1.25 * m # pitch circle to root radius, sets clearance # Calculate radii Rpitch = Z * m / 2 # pitch radius Rb = Rpitch * cos(phi * pi / 180) # base radius Ra = Rpitch - addendum # addendum radius Rroot = Rpitch + dedendum# root radius clearance = 0.25 * m # gear dedendum - pinion addendum Rf = Rroot - clearance # radius of top of fillet (end of profile) fRad = 1.5 * clearance # fillet radius, 1 .. 1.5*clearance # ****** calculate subtended angles pitchAngle = 2 * pi / Z # angle between teeth (rads) baseToPitchAngle = genInvolutePolar(Rb, Rpitch) tipToPitchAngle = baseToPitchAngle # profile starts from base circle if (Ra > Rb): tipToPitchAngle -= genInvolutePolar(Rb, Ra) # start profile from addendum pitchToFilletAngle = genInvolutePolar(Rb, Rf) - baseToPitchAngle filletAngle = 1.414 * clearance / Rf # to make fillet tangential to root # ****** generate Higuchi involute approximation fe = 1 # fraction of involute length at end of approx (fillet circle) fs = 0.01 # fraction of length offset from base to avoid singularity if (Ra > Rb): fs = (Ra*Ra - Rb*Rb) / (Rf*Rf - Rb*Rb) # start profile from addendum (tip circle) # approximate in 2 sections, split 25% along the profile fm = fs + (fe - fs) / 4 addBez = BezCoeffs(m, Z, phi, 3, fs, fm) dedBez = BezCoeffs(m, Z, phi, 3, fm, fe) addInv = addBez.involuteBezCoeffs() dedInv = dedBez.involuteBezCoeffs() # join the 2 sets of coeffs (skip duplicate mid point) invR = addInv + dedInv[1:] # create the front profile of tooth (mirror image) inv = [0 for i in range(0, len(invR))] # back involute profile for i in range(0, len(inv)): # rotate involute to put center of tooth at y = 0 pt = rotate(invR[i], pitchAngle / 4 - baseToPitchAngle) invR[i] = pt # generate the back of tooth profile, flip Y coords inv[i] = [pt[0], -pt[1]] # ****** calculate coords of section junctions fillet = [inv[6][0], inv[6][1]] # top of fillet, front of tooth tip = toCartesian(Ra, -pitchAngle / 4 + tipToPitchAngle) # tip, front of tooth tipR = [tip[0], -tip[1]] # addendum, back of tooth rootR = toCartesian(Rroot, pitchAngle / 4 + pitchToFilletAngle + filletAngle) rootNext = toCartesian(Rroot, 3 * pitchAngle / 4 - pitchToFilletAngle - filletAngle) filletNext = rotate(fillet, pitchAngle) # top of fillet, front of next tooth # Draw the shapes in SVG t_inc = 2.0 * pi / float(Z) thetas = [(x * t_inc) for x in range(Z)] svg = SVG_move(fillet, 0) # start at top of fillet for theta in thetas: svg += SVG_curve2(inv[5], inv[4], inv[3], inv[2], inv[1], inv[0], theta) if (Ra < Rb): svg += SVG_line(tip, theta) # line from end of involute to addendum (tip) svg += SVG_circle(tipR, Ra, 1, theta) # arc across tip circle if (Ra < Rb): svg += SVG_line(invR[0], theta) # line from addendum to start of involute svg += SVG_curve2(invR[1], invR[2], invR[3], invR[4], invR[5], invR[6], theta) if (rootR[1] < rootNext[1]): # there is a section of root circle between fillets svg += SVG_circle(rootR, fRad, 1, theta) # fillet on back of tooth svg += SVG_circle(rootNext, Rroot, 1, theta) # root circle arc svg += SVG_circle(filletNext, fRad, 1, theta) # fillet on next return svg class BezCoeffs: def chebyExpnCoeffs(self, j, func): N = 50 # a suitably large number N>>p c = 0 for k in range(1, N + 1): c += func(cos(pi * (k - 0.5) / N)) * cos(pi * j * (k - 0.5) / N) return 2 *c / N def chebyPolyCoeffs(self, p, func): coeffs = [0, 0, 0, 0] fnCoeff = [0, 0, 0, 0] T = [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ] # now generate the Chebyshev polynomial coefficient using # formula T(k+1) = 2xT(k) - T(k-1) which yields # T = [ [ 1, 0, 0, 0, 0, 0], # T0(x) = +1 # [ 0, 1, 0, 0, 0, 0], # T1(x) = 0 +x # [-1, 0, 2, 0, 0, 0], # T2(x) = -1 0 +2xx # [ 0, -3, 0, 4, 0, 0], # T3(x) = 0 -3x 0 +4xxx # [ 1, 0, -8, 0, 8, 0], # T4(x) = +1 0 -8xx 0 +8xxxx # [ 0, 5, 0,-20, 0, 16], # T5(x) = 0 5x 0 -20xxx 0 +16xxxxx # ... ] for k in range(1, p + 1): for j in range(0, len(T[k]) - 1): T[k + 1][j + 1] = 2 * T[k][j] for j in range(0, len(T[k - 1])): T[k + 1][j] -= T[k - 1][j] # convert the chebyshev function series into a simple polynomial # and collect like terms, out T polynomial coefficients for k in range(0, p + 1): fnCoeff[k] = self.chebyExpnCoeffs(k, func) coeffs[k] = 0 for k in range(0, p + 1): for pwr in range(0, p + 1): coeffs[pwr] += fnCoeff[k] * T[k][pwr] coeffs[0] -= self.chebyExpnCoeffs(0, func) / 2 # fix the 0th coeff return coeffs # Equation of involute using the Bezier parameter t as variable def involuteXbez(self, t): # map t (0 <= t <= 1) onto x (where -1 <= x <= 1) x = t * 2 - 1 # map theta (where ts <= theta <= te) from x (-1 <=x <= 1) theta = x * (self.te - self.ts) / 2 + (self.ts + self.te) / 2 return self.Rb * (cos(theta) + theta * sin(theta)) def involuteYbez(self, t): # map t (0 <= t <= 1) onto x (where -1 <= x <= 1) x = t * 2 - 1 # map theta (where ts <= theta <= te) from x (-1 <=x <= 1) theta = x * (self.te - self.ts) / 2 + (self.ts + self.te) / 2 return self.Rb * (sin(theta) - theta * cos(theta)) def binom(self, n, k): coeff = 1 for i in range(n - k + 1, n + 1): coeff *= i for i in range(1, k + 1): coeff /= i return coeff def bezCoeff(self, i, func): # generate the polynomial coeffs in one go polyCoeffs = self.chebyPolyCoeffs(self.p, func) bc = 0 for j in range(0, i + 1): bc += self.binom(i, j) * polyCoeffs[j] / self.binom(self.p, j) return bc def involuteBezCoeffs(self): # calc Bezier coeffs bzCoeffs = [] for i in range(0, self.p + 1): bcoeff = [0, 0] bcoeff[0] = self.bezCoeff(i, self.involuteXbez) bcoeff[1] = self.bezCoeff(i, self.involuteYbez) bzCoeffs.append(bcoeff) return bzCoeffs # Parameters: # module - sets the size of teeth (see gear design texts) # numTeeth - number of teeth on the gear # pressure angle - angle in degrees, usually 14.5 or 20 # order - the order of the Bezier curve to be fitted [3, 4, 5, ..] # fstart - fraction of distance along tooth profile to start # fstop - fraction of distance along profile to stop def __init__(self, module, numTeeth, pressureAngle, order, fstart, fstop): self.Rpitch = module * numTeeth / 2 # pitch circle radius self.phi = pressureAngle # pressure angle self.Rb = self.Rpitch * cos(self.phi * pi / 180) # base circle radius self.Ra = self.Rpitch + module # addendum radius (outer radius) self.ta = sqrt(self.Ra * self.Ra - self.Rb * self.Rb) / self.Rb # involute angle at addendum self.stop = fstop if (fstart < self.stop): self.start = fstart self.te = sqrt(self.stop) * self.ta # involute angle, theta, at end of approx self.ts = sqrt(self.start) * self.ta # involute angle, theta, at start of approx self.p = order # order of Bezier approximation