#!/usr/bin/env python3 """ cubicsuperpath.py Copyright (C) 2005 Aaron Spike, aaron@ekips.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ import lyz_simplepath as simplepath from math import * def matprod(mlist): prod=mlist[0] for m in mlist[1:]: a00=prod[0][0]*m[0][0]+prod[0][1]*m[1][0] a01=prod[0][0]*m[0][1]+prod[0][1]*m[1][1] a10=prod[1][0]*m[0][0]+prod[1][1]*m[1][0] a11=prod[1][0]*m[0][1]+prod[1][1]*m[1][1] prod=[[a00,a01],[a10,a11]] return prod def rotmat(teta): return [[cos(teta),-sin(teta)],[sin(teta),cos(teta)]] def applymat(mat, pt): x=mat[0][0]*pt[0]+mat[0][1]*pt[1] y=mat[1][0]*pt[0]+mat[1][1]*pt[1] pt[0]=x pt[1]=y def norm(pt): return sqrt(pt[0]*pt[0]+pt[1]*pt[1]) def ArcToPath(p1,params): A=p1[:] rx,ry,teta,longflag,sweepflag,x2,y2=params[:] teta = teta*pi/180.0 B=[x2,y2] if rx==0 or ry==0 or A==B: return([[A[:],A[:],A[:]],[B[:],B[:],B[:]]]) mat=matprod((rotmat(teta),[[1/rx,0],[0,1/ry]],rotmat(-teta))) applymat(mat, A) applymat(mat, B) k=[-(B[1]-A[1]),B[0]-A[0]] d=k[0]*k[0]+k[1]*k[1] k[0]/=sqrt(d) k[1]/=sqrt(d) d=sqrt(max(0,1-d/4)) if longflag==sweepflag: d*=-1 O=[(B[0]+A[0])/2+d*k[0],(B[1]+A[1])/2+d*k[1]] OA=[A[0]-O[0],A[1]-O[1]] OB=[B[0]-O[0],B[1]-O[1]] start=acos(OA[0]/norm(OA)) if OA[1]<0: start*=-1 end=acos(OB[0]/norm(OB)) if OB[1]<0: end*=-1 if sweepflag and start>end: end +=2*pi if (not sweepflag) and start<end: end -=2*pi NbSectors=int(abs(start-end)*2/pi)+1 dTeta=(end-start)/NbSectors #v=dTeta*2/pi*0.552 #v=dTeta*2/pi*4*(sqrt(2)-1)/3 v = 4*tan(dTeta/4)/3 #if not sweepflag: # v*=-1 p=[] for i in range(0,NbSectors+1,1): angle=start+i*dTeta v1=[O[0]+cos(angle)-(-v)*sin(angle),O[1]+sin(angle)+(-v)*cos(angle)] pt=[O[0]+cos(angle) ,O[1]+sin(angle) ] v2=[O[0]+cos(angle)- v *sin(angle),O[1]+sin(angle)+ v *cos(angle)] p.append([v1,pt,v2]) p[ 0][0]=p[ 0][1][:] p[-1][2]=p[-1][1][:] mat=matprod((rotmat(teta),[[rx,0],[0,ry]],rotmat(-teta))) for pts in p: applymat(mat, pts[0]) applymat(mat, pts[1]) applymat(mat, pts[2]) return(p) def CubicSuperPath(simplepath): csp = [] subpath = -1 subpathstart = [] last = [] lastctrl = [] for s in simplepath: cmd, params = s if cmd == 'M': if last: csp[subpath].append([lastctrl[:],last[:],last[:]]) subpath += 1 csp.append([]) subpathstart = params[:] last = params[:] lastctrl = params[:] elif cmd == 'L': csp[subpath].append([lastctrl[:],last[:],last[:]]) last = params[:] lastctrl = params[:] elif cmd == 'C': csp[subpath].append([lastctrl[:],last[:],params[:2]]) last = params[-2:] lastctrl = params[2:4] elif cmd == 'Q': q0=last[:] q1=params[0:2] q2=params[2:4] x0= q0[0] x1=1./3*q0[0]+2./3*q1[0] x2= 2./3*q1[0]+1./3*q2[0] x3= q2[0] y0= q0[1] y1=1./3*q0[1]+2./3*q1[1] y2= 2./3*q1[1]+1./3*q2[1] y3= q2[1] csp[subpath].append([lastctrl[:],[x0,y0],[x1,y1]]) last = [x3,y3] lastctrl = [x2,y2] elif cmd == 'A': arcp=ArcToPath(last[:],params[:]) arcp[ 0][0]=lastctrl[:] last=arcp[-1][1] lastctrl = arcp[-1][0] csp[subpath]+=arcp[:-1] elif cmd == 'Z': csp[subpath].append([lastctrl[:],last[:],last[:]]) last = subpathstart[:] lastctrl = subpathstart[:] #append final superpoint csp[subpath].append([lastctrl[:],last[:],last[:]]) return csp def unCubicSuperPath(csp): a = [] for subpath in csp: if subpath: a.append(['M',subpath[0][1][:]]) for i in range(1,len(subpath)): a.append(['C',subpath[i-1][2][:] + subpath[i][0][:] + subpath[i][1][:]]) return a def parsePath(d): return CubicSuperPath(simplepath.parsePath(d)) def formatPath(p): return simplepath.formatPath(unCubicSuperPath(p))