#!/usr/bin/env python import networkx as nx from networkx.testing.utils import * class TestCore: @classmethod def setup_class(cls): # G is the example graph in Figure 1 from Batagelj and # Zaversnik's paper titled An O(m) Algorithm for Cores # Decomposition of Networks, 2003, # http://arXiv.org/abs/cs/0310049. With nodes labeled as # shown, the 3-core is given by nodes 1-8, the 2-core by nodes # 9-16, the 1-core by nodes 17-20 and node 21 is in the # 0-core. t1 = nx.convert_node_labels_to_integers(nx.tetrahedral_graph(), 1) t2 = nx.convert_node_labels_to_integers(t1, 5) G = nx.union(t1, t2) G.add_edges_from([(3, 7), (2, 11), (11, 5), (11, 12), (5, 12), (12, 19), (12, 18), (3, 9), (7, 9), (7, 10), (9, 10), (9, 20), (17, 13), (13, 14), (14, 15), (15, 16), (16, 13)]) G.add_node(21) cls.G = G # Create the graph H resulting from the degree sequence # [0, 1, 2, 2, 2, 2, 3] when using the Havel-Hakimi algorithm. degseq = [0, 1, 2, 2, 2, 2, 3] H = nx.havel_hakimi_graph(degseq) mapping = {6: 0, 0: 1, 4: 3, 5: 6, 3: 4, 1: 2, 2: 5} cls.H = nx.relabel_nodes(H, mapping) def test_trivial(self): """Empty graph""" G = nx.Graph() assert nx.find_cores(G) == {} def test_find_cores(self): core = nx.find_cores(self.G) nodes_by_core = [sorted([n for n in core if core[n] == val]) for val in range(4)] assert_nodes_equal(nodes_by_core[0], [21]) assert_nodes_equal(nodes_by_core[1], [17, 18, 19, 20]) assert_nodes_equal(nodes_by_core[2], [9, 10, 11, 12, 13, 14, 15, 16]) assert_nodes_equal(nodes_by_core[3], [1, 2, 3, 4, 5, 6, 7, 8]) def test_core_number(self): # smoke test real name cores = nx.core_number(self.G) def test_find_cores2(self): core = nx.find_cores(self.H) nodes_by_core = [sorted([n for n in core if core[n] == val]) for val in range(3)] assert_nodes_equal(nodes_by_core[0], [0]) assert_nodes_equal(nodes_by_core[1], [1, 3]) assert_nodes_equal(nodes_by_core[2], [2, 4, 5, 6]) def test_directed_find_cores(self): '''core number had a bug for directed graphs found in issue #1959''' # small example where too timid edge removal can make cn[2] = 3 G = nx.DiGraph() edges = [(1, 2), (2, 1), (2, 3), (2, 4), (3, 4), (4, 3)] G.add_edges_from(edges) assert nx.core_number(G) == {1: 2, 2: 2, 3: 2, 4: 2} # small example where too aggressive edge removal can make cn[2] = 2 more_edges = [(1, 5), (3, 5), (4, 5), (3, 6), (4, 6), (5, 6)] G.add_edges_from(more_edges) assert nx.core_number(G) == {1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3} def test_main_core(self): main_core_subgraph = nx.k_core(self.H) assert sorted(main_core_subgraph.nodes()) == [2, 4, 5, 6] def test_k_core(self): # k=0 k_core_subgraph = nx.k_core(self.H, k=0) assert sorted(k_core_subgraph.nodes()) == sorted(self.H.nodes()) # k=1 k_core_subgraph = nx.k_core(self.H, k=1) assert sorted(k_core_subgraph.nodes()) == [1, 2, 3, 4, 5, 6] # k = 2 k_core_subgraph = nx.k_core(self.H, k=2) assert sorted(k_core_subgraph.nodes()) == [2, 4, 5, 6] def test_main_crust(self): main_crust_subgraph = nx.k_crust(self.H) assert sorted(main_crust_subgraph.nodes()) == [0, 1, 3] def test_k_crust(self): # k = 0 k_crust_subgraph = nx.k_crust(self.H, k=2) assert sorted(k_crust_subgraph.nodes()) == sorted(self.H.nodes()) # k=1 k_crust_subgraph = nx.k_crust(self.H, k=1) assert sorted(k_crust_subgraph.nodes()) == [0, 1, 3] # k=2 k_crust_subgraph = nx.k_crust(self.H, k=0) assert sorted(k_crust_subgraph.nodes()) == [0] def test_main_shell(self): main_shell_subgraph = nx.k_shell(self.H) assert sorted(main_shell_subgraph.nodes()) == [2, 4, 5, 6] def test_k_shell(self): # k=0 k_shell_subgraph = nx.k_shell(self.H, k=2) assert sorted(k_shell_subgraph.nodes()) == [2, 4, 5, 6] # k=1 k_shell_subgraph = nx.k_shell(self.H, k=1) assert sorted(k_shell_subgraph.nodes()) == [1, 3] # k=2 k_shell_subgraph = nx.k_shell(self.H, k=0) assert sorted(k_shell_subgraph.nodes()) == [0] def test_k_corona(self): # k=0 k_corona_subgraph = nx.k_corona(self.H, k=2) assert sorted(k_corona_subgraph.nodes()) == [2, 4, 5, 6] # k=1 k_corona_subgraph = nx.k_corona(self.H, k=1) assert sorted(k_corona_subgraph.nodes()) == [1] # k=2 k_corona_subgraph = nx.k_corona(self.H, k=0) assert sorted(k_corona_subgraph.nodes()) == [0] def test_k_truss(self): # k=-1 k_truss_subgraph = nx.k_truss(self.G, -1) assert sorted(k_truss_subgraph.nodes()) == list(range(1,21)) # k=0 k_truss_subgraph = nx.k_truss(self.G, 0) assert sorted(k_truss_subgraph.nodes()) == list(range(1,21)) # k=1 k_truss_subgraph = nx.k_truss(self.G, 1) assert sorted(k_truss_subgraph.nodes()) == list(range(1,13)) # k=2 k_truss_subgraph = nx.k_truss(self.G, 2) assert sorted(k_truss_subgraph.nodes()) == list(range(1,9)) # k=3 k_truss_subgraph = nx.k_truss(self.G, 3) assert sorted(k_truss_subgraph.nodes()) == [] def test_onion_layers(self): layers = nx.onion_layers(self.G) nodes_by_layer = [sorted([n for n in layers if layers[n] == val]) for val in range(1, 7)] assert_nodes_equal(nodes_by_layer[0], [21]) assert_nodes_equal(nodes_by_layer[1], [17, 18, 19, 20]) assert_nodes_equal(nodes_by_layer[2], [10, 12, 13, 14, 15, 16]) assert_nodes_equal(nodes_by_layer[3], [9, 11]) assert_nodes_equal(nodes_by_layer[4], [1, 2, 4, 5, 6, 8]) assert_nodes_equal(nodes_by_layer[5], [3, 7])