#!/usr/bin/env python3 # # Copyright (C) 2007 John Beard john.j.beard@gmail.com # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # """ This extension draws 3d objects from a Wavefront .obj 3D file stored in a local folder Many settings for appearance, lighting, rotation, etc are available. ^y | __--``| |_--``| __-- __--`` | __--``| |_--`` | z | | |_--``| | <----|--------|-----_0-----|---------------- | | |_--`` | | | __--`` <-``| |_--`` |__--`` x |__--``| IMAGE PLANE SCENE| | Vertices are given as "v" followed by three numbers (x,y,z). All files need a vertex list v x.xxx y.yyy z.zzz Faces are given by a list of vertices (vertex 1 is the first in the list above, 2 the second, etc): f 1 2 3 Edges are given by a list of vertices. These will be broken down into adjacent pairs automatically. l 1 2 3 Faces are rendered according to the painter's algorithm and perhaps back-face culling, if selected. The parameter to sort the faces by is user-selectable between max, min and average z-value of the vertices """ import os from math import acos, cos, floor, pi, sin, sqrt import numpy import tempfile import openmesh as om import inkex from inkex import Group, Circle, Color from inkex.utils import pairwise from inkex.paths import Move, Line def draw_circle(r, cx, cy, width, fill, name, parent): """Draw an SVG circle""" circle = parent.add(Circle(cx=str(cx), cy=str(cy), r=str(r))) circle.style = {'stroke': '#000000', 'stroke-width': str(width), 'fill': fill} circle.label = name def draw_line(x1, y1, x2, y2, width, name, parent): elem = parent.add(inkex.PathElement()) elem.style = {'stroke': '#000000', 'stroke-width': str(width), 'fill': 'none', 'stroke-linecap': 'round'} elem.set('inkscape:label', name) elem.path = [Move(x1, y1), Line(x2, y2)] def draw_poly(pts, face, st, name, parent): """Draw polygone""" style = {'stroke': '#000000', 'stroke-width': str(st.th), 'stroke-linejoin': st.linejoin, 'stroke-opacity': st.s_opac, 'fill': st.fill, 'fill-opacity': st.fill_opacity} path = inkex.Path() for facet in face: if not path: # for first point path.append(Move(pts[facet - 1][0], -pts[facet - 1][1])) else: path.append(Line(pts[facet - 1][0], -pts[facet - 1][1])) path.close() poly = parent.add(inkex.PathElement()) poly.label = name poly.style = style poly.path = path def draw_edges(edge_list, pts, st, parent): for edge in edge_list: # for every edge pt_1 = pts[edge[0] - 1][0:2] # the point at the start pt_2 = pts[edge[1] - 1][0:2] # the point at the end name = 'Edge' + str(edge[0]) + '-' + str(edge[1]) draw_line(pt_1[0], -pt_1[1], pt_2[0], -pt_2[1], st.th, name, parent) def draw_faces(faces_data, pts, obj, shading, fill_col, st, parent): for face in faces_data: # for every polygon that has been sorted if shading: st.fill = get_darkened_colour(fill_col, face[1] / pi) # darken proportionally to angle to lighting vector else: st.fill = get_darkened_colour(fill_col, 1) # do not darken colour face_no = face[3] # the number of the face to draw draw_poly(pts, obj.fce[face_no], st, 'Face:' + str(face_no), parent) def get_darkened_colour(rgb, factor): """return a hex triplet of colour, reduced in lightness 0.0-1.0""" return '#' + "%02X" % floor(factor * rgb[0]) \ + "%02X" % floor(factor * rgb[1]) \ + "%02X" % floor(factor * rgb[2]) # make the colour string def make_rotation_log(options): """makes a string recording the axes and angles of each rotation, so an object can be repeated""" return options.r1_ax + str('%.2f' % options.r1_ang) + ':' + \ options.r2_ax + str('%.2f' % options.r2_ang) + ':' + \ options.r3_ax + str('%.2f' % options.r3_ang) + ':' + \ options.r1_ax + str('%.2f' % options.r4_ang) + ':' + \ options.r2_ax + str('%.2f' % options.r5_ang) + ':' + \ options.r3_ax + str('%.2f' % options.r6_ang) def normalise(vector): """return the unit vector pointing in the same direction as the argument""" length = sqrt(numpy.dot(vector, vector)) return numpy.array(vector) / length def get_normal(pts, face): """normal vector for the plane passing though the first three elements of face of pts""" return numpy.cross( (numpy.array(pts[face[0] - 1]) - numpy.array(pts[face[1] - 1])), (numpy.array(pts[face[0] - 1]) - numpy.array(pts[face[2] - 1])), ).flatten() def get_unit_normal(pts, face, cw_wound): """ Returns the unit normal for the plane passing through the first three points of face, taking account of winding """ # if it is clockwise wound, reverse the vector direction winding = -1 if cw_wound else 1 return winding * normalise(get_normal(pts, face)) def rotate(matrix, rads, axis): """choose the correct rotation matrix to use""" if axis == 'x': trans_mat = numpy.array([ [1, 0, 0], [0, cos(rads), -sin(rads)], [0, sin(rads), cos(rads)]]) elif axis == 'y': trans_mat = numpy.array([ [cos(rads), 0, sin(rads)], [0, 1, 0], [-sin(rads), 0, cos(rads)]]) elif axis == 'z': trans_mat = numpy.array([ [cos(rads), -sin(rads), 0], [sin(rads), cos(rads), 0], [0, 0, 1]]) return numpy.matmul(trans_mat, matrix) class Style(object): # container for style information def __init__(self, options): self.th = options.th self.fill = '#ff0000' self.col = '#000000' self.r = 2 self.s_opac = str(options.s_opac / 100.0) self.fill_opacity = options.fill_color.alpha self.linecap = 'round' self.linejoin = 'round' class WavefrontObj(object): """Wavefront based 3d object defined by the vertices and the faces (eg a polyhedron)""" name = property(lambda self: self.meta.get('name', None)) def __init__(self, filename): self.meta = { 'name': os.path.basename(filename).rsplit('.', 1)[0] } self.vtx = [] self.edg = [] self.fce = [] self._parse_file(filename) def _parse_file(self, filename): if not os.path.isfile(filename): raise IOError("Can't find wavefront object file {}".format(filename)) with open(filename, 'r') as fhl: for line in fhl: self._parse_line(line.strip()) def _parse_line(self, line): if line.startswith('#'): if ':' in line: name, value = line.split(':', 1) self.meta[name.lower()] = value elif line: (kind, line) = line.split(None, 1) kind_name = 'add_' + kind if hasattr(self, kind_name): getattr(self, kind_name)(line) @staticmethod def _parse_numbers(line, typ=str): # Ignore any slash options and always pick the first one return [typ(v.split('/')[0]) for v in line.split()] def add_v(self, line): """Add vertex from parsed line""" vertex = self._parse_numbers(line, float) if len(vertex) == 3: self.vtx.append(vertex) def add_l(self, line): """Add line from parsed line""" vtxlist = self._parse_numbers(line, int) # we need at least 2 vertices to make an edge if len(vtxlist) > 1: # we can have more than one vertex per line - get adjacent pairs self.edg.append(pairwise(vtxlist)) def add_f(self, line): """Add face from parsed line""" vtxlist = self._parse_numbers(line, int) # we need at least 3 vertices to make an edge if len(vtxlist) > 2: self.fce.append(vtxlist) def get_transformed_pts(self, trans_mat): """translate vertex points according to the matrix""" transformed_pts = [] for vtx in self.vtx: transformed_pts.append((numpy.matmul(trans_mat, numpy.array(vtx).T)).T.tolist()) return transformed_pts def get_edge_list(self): """make an edge vertex list from an existing face vertex list""" edge_list = [] for face in self.fce: for j, edge in enumerate(face): # Ascending order of vertices (for duplicate detection) edge_list.append(sorted([edge, face[(j + 1) % len(face)]])) return [list(x) for x in sorted(set(tuple(x) for x in edge_list))] class Import3DMesh(inkex.GenerateExtension): """Generate a polyhedron from a wavefront 3d model file""" def add_arguments(self, pars): pars.add_argument("--tab", default="object") # MODEL FILE SETTINGS pars.add_argument("--obj", default='cube') pars.add_argument("--input_choice", default='default') pars.add_argument("--spec_file", default='great_rhombicuboct.obj') pars.add_argument("--cw_wound", type=inkex.Boolean, default=True) pars.add_argument("--type", default='face') # VEIW SETTINGS pars.add_argument("--r1_ax", default="x") pars.add_argument("--r2_ax", default="x") pars.add_argument("--r3_ax", default="x") pars.add_argument("--r4_ax", default="x") pars.add_argument("--r5_ax", default="x") pars.add_argument("--r6_ax", default="x") pars.add_argument("--r1_ang", type=float, default=0.0) pars.add_argument("--r2_ang", type=float, default=0.0) pars.add_argument("--r3_ang", type=float, default=0.0) pars.add_argument("--r4_ang", type=float, default=0.0) pars.add_argument("--r5_ang", type=float, default=0.0) pars.add_argument("--r6_ang", type=float, default=0.0) pars.add_argument("--scl", type=float, default=100.0) # STYLE SETTINGS pars.add_argument("--show", type=self.arg_method('gen')) pars.add_argument("--shade", type=inkex.Boolean, default=True) pars.add_argument("--fill_color", type=Color, default='1943148287', help="Fill color") pars.add_argument("--s_opac", type=int, default=100) pars.add_argument("--th", type=float, default=2) pars.add_argument("--lv_x", type=float, default=1) pars.add_argument("--lv_y", type=float, default=1) pars.add_argument("--lv_z", type=float, default=-2) pars.add_argument("--back", type=inkex.Boolean, default=False) pars.add_argument("--z_sort", type=self.arg_method('z_sort'), default=self.z_sort_min) def get_filename(self): """Get the filename for the spec file""" if self.options.input_choice == 'custom': return self.options.spec_file if self.options.input_choice == 'default': moddir = self.ext_path() return os.path.join(moddir, 'Poly3DObjects', self.options.obj + '.obj') def generate(self): so = self.options if not os.path.exists(self.get_filename()): inkex.utils.debug("The input file does not exist.") exit(1) input_mesh = om.read_polymesh(self.get_filename()) #read input file output_obj = os.path.join(tempfile.gettempdir(), "input_mesh.obj") om.write_mesh(output_obj, input_mesh) #write to obj file obj = WavefrontObj(output_obj) scale = self.svg.unittouu('1px') # convert to document units st = Style(so) # initialise style # we will put all the rotations in the object name, so it can be repeated in poly = Group.new(obj.name + ':' + make_rotation_log(so)) (pos_x, pos_y) = self.svg.namedview.center #poly.transform.add_translate(pos_x, pos_y) poly.transform.add_scale(scale) # TRANSFORMATION OF THE OBJECT (ROTATION, SCALE, ETC) trans_mat = numpy.identity(3, float) # init. trans matrix as identity matrix for i in range(1, 7): # for each rotation axis = getattr(so, 'r{}_ax'.format(i)) angle = getattr(so, 'r{}_ang'.format(i)) * pi / 180 trans_mat = rotate(trans_mat, angle, axis) # scale by linear factor (do this only after the transforms to reduce round-off) trans_mat = trans_mat * so.scl # the points as projected in the z-axis onto the viewplane transformed_pts = obj.get_transformed_pts(trans_mat) so.show(obj, st, poly, transformed_pts) return poly def gen_vtx(self, obj, st, poly, transformed_pts): """Generate Vertex""" for i, pts in enumerate(transformed_pts): draw_circle(st.r, pts[0], pts[1], st.th, '#000000', 'Point' + str(i), poly) def gen_edg(self, obj, st, poly, transformed_pts): """Generate edges""" # we already have an edge list edge_list = obj.edg if obj.fce: # we must generate the edge list from the faces edge_list = obj.get_edge_list() draw_edges(edge_list, transformed_pts, st, poly) def gen_fce(self, obj, st, poly, transformed_pts): """Generate face""" so = self.options # colour tuple for the face fill # unit light vector lighting = normalise((so.lv_x, -so.lv_y, so.lv_z)) # we have a face list if obj.fce: z_list = [] for i, face in enumerate(obj.fce): # get the normal vector to the face norm = get_unit_normal(transformed_pts, face, so.cw_wound) # get the angle between the normal and the lighting vector angle = acos(numpy.dot(norm, lighting)) z_sort_param = so.z_sort(transformed_pts, face) # include all polygons or just the front-facing ones as needed if so.back or norm[2] > 0: # record the maximum z-value of the face and angle to # light, along with the face ID and normal z_list.append((z_sort_param, angle, norm, i)) z_list.sort(key=lambda x: x[0]) # sort by ascending sort parameter of the face draw_faces(z_list, transformed_pts, obj, so.shade, self.options.fill_color, st, poly) else: # we cannot generate a list of faces from the edges without a lot of computation raise inkex.AbortExtension("Face data not found.") @staticmethod def z_sort_max(pts, face): """returns the largest z_value of any point in the face""" return max([pts[facet - 1][2] for facet in face]) @staticmethod def z_sort_min(pts, face): """returns the smallest z_value of any point in the face""" return min([pts[facet - 1][2] for facet in face]) @staticmethod def z_sort_cent(pts, face): """returns the centroid z_value of any point in the face""" return sum([pts[facet - 1][2] for facet in face]) / len(face) if __name__ == '__main__': Import3DMesh().run()