#!/usr/bin/env python3 # Copyright (c) 2012 Stuart Pernsteiner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED # WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys import inkex from inkex.paths import Path import gettext _ = gettext.gettext from copy import deepcopy import math from math import sqrt class EllipseSolveEffect(inkex.EffectExtension): def effect(self): if len(self.svg.selected) == 0: sys.exit(_("Error: You must select at least one path")) for pathId in self.svg.selected: path = self.svg.selected[pathId] pathdata = Path(path.get('d')).to_arrays() if len(pathdata) < 5: sys.exit(_("Error: The selected path has %d points, " + "but 5 are needed.") % len(pathdata)) points = [] for i in range(5): # pathdata[i] is the i'th segment of the path # pathdata[i][1] is the list of coordinates for the segment # pathdata[i][1][-2] is the x-coordinate of the last x,y pair # in the segment definition segpoints = pathdata[i][1] x = segpoints[-2] y = segpoints[-1] points.append((x,y)) conic = solve_conic(points) [a,b,c,d,e,f] = conic if bareiss_determinant([[a,b/2,d/2],[b/2,c,e/2],[d/2,e/2,f]]) == 0 or a*c - b*b/4 <= 0: sys.exit(_("Error: Could not find an ellipse that passes " + "through the provided points")) center = ellipse_center(conic) [ad1, ad2] = ellipse_axes(conic) al1 = ellipse_axislen(conic, center, ad1) al2 = ellipse_axislen(conic, center, ad2) # Create an <svg:ellipse> object with the appropriate cx,cy and # with the major axis in the x direction. Then add a transform to # rotate it to the correct angle. if al1 > al2: major_dir = ad1 major_len = al1 minor_len = al2 else: major_dir = ad2 major_len = al2 minor_len = al1 # add sodipodi magic to turn the path into an ellipse def sodi(x): return inkex.addNS(x, 'sodipodi') path.set(sodi('cx'), str(center[0])) path.set(sodi('cy'), str(center[1])) path.set(sodi('rx'), str(major_len)) path.set(sodi('ry'), str(minor_len)) path.set(sodi('type'), 'arc') #inkex.utils.debug(str(center[0])) #inkex.utils.debug(str(center[1])) angle = math.atan2(major_dir[1], major_dir[0]) if angle > math.pi / 2: angle -= math.pi if angle < -math.pi / 2: angle += math.pi path.apply_transform() path.set('transform', 'rotate(%f %f %f)' % (angle * 180 / math.pi, center[0], center[1])) # NASTY BUGFIX: We do apply_transform and path.set twice because otherwise the ellipse will not be rendered correctly. Reason unknown! path.apply_transform() path.set('transform', 'rotate(%f %f %f)' % (angle * 180 / math.pi, center[0], center[1])) def solve_conic(pts): # Find the equation of the conic section passing through the five given # points. # # This technique is from # http://math.fullerton.edu/mathews/n2003/conicfit/ConicFitMod/Links/ConicFitMod_lnk_9.html # (retrieved 31 Jan 2012) rowmajor_matrix = [] for i in range(5): (x,y) = pts[i] row = [x*x, x*y, y*y, x, y, 1] rowmajor_matrix.append(row) full_matrix = [] for i in range(6): col = [] for j in range(5): col.append(rowmajor_matrix[j][i]) full_matrix.append(col); coeffs = [] sign = 1 for i in range(6): mat = [] for j in range(6): if j == i: continue mat.append(full_matrix[j]) coeffs.append(bareiss_determinant(mat) * sign) sign = -sign return coeffs def bareiss_determinant(mat_orig): # Compute the determinant of the matrix using Bareiss's algorithm. It # doesn't matter whether 'mat' is in row-major or column-major layout, # because det(A) = det(A^T) # Algorithm from: # Yap, Chee, "Linear Systems", Fundamental Problems of Algorithmic Algebra # Lecture X, Section 2 # http://cs.nyu.edu/~yap/book/alge/ftpSite/l10.ps.gz mat = deepcopy(mat_orig); size = len(mat) last_akk = 1 for k in range(size-1): if last_akk == 0: return 0 for i in range(k+1, size): for j in range(k+1, size): mat[i][j] = (mat[i][j] * mat[k][k] - mat[i][k] * mat[k][j]) / last_akk last_akk = mat[k][k] return mat[size-1][size-1] def ellipse_center(conic): # From # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections#Center [a,b,c,d,e,f] = conic x = (b*e - 2*c*d) / (4*a*c - b*b); y = (d*b - 2*a*e) / (4*a*c - b*b); return (x,y) def ellipse_axes(conic): # Compute the axis directions of the ellipse. # This technique is from # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections#Axes [a,b,c,d,e,f] = conic # Compute the eigenvalues of # / a b/2 \ # \ b/2 c / # This algorithm is from # http://www.math.harvard.edu/archive/21b_fall_04/exhibits/2dmatrices/index.html # (retrieved 31 Jan 2012) ma = a mb = b/2 mc = b/2 md = c mdet = ma*md - mb*mc mtrace = ma + md (l1,l2) = solve_quadratic(1, -mtrace, mdet); # Eigenvalues (\lambda_1, \lambda_2) #l1 = mtrace / 2 + sqrt(mtrace*mtrace/4 - mdet) #l2 = mtrace / 2 - sqrt(mtrace*mtrace/4 - mdet) if mb == 0: return [(0,1), (1,0)] else: return [(mb, l1-ma), (mb, l2-ma)] def ellipse_axislen(conic, center, direction): # Compute the axis length as a multiple of the magnitude of 'direction' [a,b,c,d,e,f] = conic (cx,cy) = center (dx,dy) = direction dlen = sqrt(dx*dx + dy*dy) dx /= dlen dy /= dlen # Solve for t: # a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0 # x = cx + t * dx # y = cy + t * dy # by substituting, we get qa*t^2 + qb*t + qc = 0, where: qa = a*dx*dx + b*dx*dy + c*dy*dy qb = a*2*cx*dx + b*(cx*dy + cy*dx) + c*2*cy*dy + d*dx + e*dy qc = a*cx*cx + b*cx*cy + c*cy*cy + d*cx + e*cy + f (t1,t2) = solve_quadratic(qa,qb,qc) return max(t1,t2) def solve_quadratic(a,b,c): disc = b*b - 4*a*c disc_root = sqrt(b*b - 4*a*c) x1 = (-b + disc_root) / (2*a) x2 = (-b - disc_root) / (2*a) return (x1,x2) if __name__ == '__main__': EllipseSolveEffect().run()