from inkscape_helper.PathSegment import * from inkscape_helper.Coordinate import Coordinate from inkscape_helper.Ellipse import Ellipse from math import sqrt, pi import copy class EllipticArc(PathSegment): ell_dict = {} def __init__(self, start, end, rx, ry, axis_rot, pos_dir=True, large_arc=False): self.rx = rx self.ry = ry # calculate ellipse center # the center is on two ellipses one with its center at the start point, the other at the end point # for simplicity take the one ellipse at the origin and the other with offset (tx, ty), # find the center and translate back to the original offset at the end axis_rot *= pi / 180 # convert to radians # start and end are mutable objects, copy to avoid modifying them r_start = copy.copy(start) r_end = copy.copy(end) r_start.t -= axis_rot r_end.t -= axis_rot end_o = r_end - r_start # offset end vector tx = end_o.x ty = end_o.y # some helper variables for the intersection points # used sympy to come up with the equations ff = (rx**2*ty**2 + ry**2*tx**2) cx = rx**2*ry*tx*ty**2 + ry**3*tx**3 cy = rx*ty*ff sx = rx*ty*sqrt(4*rx**4*ry**2*ty**2 - rx**4*ty**4 + 4*rx**2*ry**4*tx**2 - 2*rx**2*ry**2*tx**2*ty**2 - ry**4*tx**4) sy = ry*tx*sqrt(-ff*(-4*rx**2*ry**2 + rx**2*ty**2 + ry**2*tx**2)) # intersection points c1 = Coordinate((cx - sx) / (2*ry*ff), (cy + sy) / (2*rx*ff)) c2 = Coordinate((cx + sx) / (2*ry*ff), (cy - sy) / (2*rx*ff)) if end_o.cross_norm(c1 - r_start) < 0: # c1 is to the left of end_o left = c1 right = c2 else: left = c2 right = c1 if pos_dir != large_arc: #center should be on the left of end_o center_o = left else: #center should be on the right of end_o center_o = right #re-use ellipses with same rx, ry to save some memory if (rx, ry) in self.ell_dict: self.ellipse = self.ell_dict[(rx, ry)] else: self.ellipse = Ellipse(rx, ry) self.ell_dict[(rx, ry)] = self.ellipse self.start = start self.end = end self.axis_rot = axis_rot self.pos_dir = pos_dir self.large_arc = large_arc self.start_theta = self.ellipse.theta_at_angle((-center_o).t) self.end_theta = self.ellipse.theta_at_angle((end_o - center_o).t) # translate center back to original offset center_o.t += axis_rot self.center = center_o + start @property def length(self): return self.ellipse.dist_from_theta(self.start_theta, self.end_theta) def t_to_theta(self, t): """convert t (always between 0 and 1) to angle theta""" start = self.start_theta end = self.end_theta if self.pos_dir and end < start: end += 2 * pi if not self.pos_dir and start < end: end -= 2 * pi arc_size = end - start return (start + (end - start) * t) % (2 * pi) def theta_to_t(self, theta): full_arc_size = (self.end_theta - self.start_theta + 2 * pi) % (2 * pi) theta_arc_size = (theta - self.start_theta + 2 * pi) % (2 * pi) return theta_arc_size / full_arc_size def curvature(self, t): theta = self.t_to_theta(t) return self.ellipse.curvature(theta) def tangent(self, t): theta = self.t_to_theta(t) return self.ellipse.tangent(theta) def t_at_length(self, length): """interpolated t where the curve is at the given length""" theta = self.ellipse.theta_from_dist(length, self.start_theta) return self.theta_to_t(theta) def length_at_t(self, t): return self.ellipse.dist_from_theta(self.start_theta, self.t_to_theta(t)) def pathpoint_at_t(self, t): """pathpoint on the curve from t=0 to point at t.""" centered = self.ellipse.coordinate_at_theta(self.t_to_theta(t)) centered.t += self.axis_rot return PathPoint(t, centered + self.center, self.tangent(t), self.curvature(t), self.length_at_t(t)) # identical to Bezier code def subdivide(self, part_length, start_offset=0): nr_parts = int((self.length - start_offset) // part_length) k_o = start_offset / self.length k2t = lambda k : k_o + k * part_length / self.length points = [self.pathpoint_at_t(k2t(k)) for k in range(nr_parts + 1)] return(points, self.length - points[-1].c_dist)