from __future__ import division from PathSegment import * from math import hypot class BezierCurve(PathSegment): nr_points = 10 def __init__(self, P): # number of points is limited to 3 or 4 if len(P) == 3: # quadratic self.B = lambda t : (1 - t)**2 * P[0] + 2 * (1 - t) * t * P[1] + t**2 * P[2] self.Bd = lambda t : 2 * (1 - t) * (P[1] - P[0]) + 2 * t * (P[2] - P[1]) self.Bdd = lambda t : 2 * (P[2] - 2 * P[1] + P[0]) elif len(P) == 4: #cubic self.B = lambda t : (1 - t)**3 * P[0] + 3 * (1 - t)**2 * t * P[1] + 3 * (1 - t) * t**2 * P[2] + t**3 * P[3] self.Bd = lambda t : 3 * (1 - t)**2 * (P[1] - P[0]) + 6 * (1 - t) * t * (P[2] - P[1]) + 3 * t**2 * (P[3] - P[2]) self.Bdd = lambda t : 6 * (1 - t) * (P[2] - 2 * P[1] + P[0]) + 6 * t * (P[3] - 2 * P[2] + P[1]) self.tangent = lambda t : self.Bd(t) # self.curvature = lambda t : (Bd(t).x * Bdd(t).y - Bd(t).y * Bdd(t).x) / hypot(Bd(t).x, Bd(t).y)**3 self.distances = [0] # cumulative distances for each 't' prev_pt = self.B(0) for i in range(self.nr_points): t = (i + 1) / self.nr_points pt = self.B(t) self.distances.append(self.distances[-1] + hypot(prev_pt.x - pt.x, prev_pt.y - pt.y)) prev_pt = pt self._length = self.distances[-1] def curvature(self, t): n = self.Bd(t).x * self.Bdd(t).y - self.Bd(t).y * self.Bdd(t).x d = hypot(self.Bd(t).x, self.Bd(t).y)**3 if d == 0: return n * float('inf') else: return n / d @classmethod def quadratic(cls, start, c, end): bezier = cls() @classmethod def cubic(cls, start, c1, c2, end): bezier = cls() def __make_eq__(self): pass @property def length(self): return self._length def subdivide(self, part_length, start_offset=0): nr_parts = int((self.length - start_offset) // part_length) k_o = start_offset / self.length k2t = lambda k : k_o + k * part_length / self.length points = [self.pathpoint_at_t(k2t(k)) for k in range(nr_parts + 1)] return(points, self.length - points[-1].c_dist) def pathpoint_at_t(self, t): """pathpoint on the curve from t=0 to point at t.""" step = 1 / self.nr_points pt_idx = int(t / step) length = self.distances[pt_idx] ip_fact = (t - pt_idx * step) / step if ip_fact > 0 and t < 1: # not a perfect match, need to interpolate length += ip_fact * (self.distances[pt_idx + 1] - self.distances[pt_idx]) return PathPoint(t, self.B(t), self.tangent(t), self.curvature(t), length) def t_at_length(self, length): """interpolated t where the curve is at the given length""" if length == self.length: return 1 i_small = 0 i_big = self.nr_points + 1 while i_big - i_small > 1: # binary search i_half = i_small + (i_big - i_small) // 2 if self.distances[i_half] <= length: i_small = i_half else: i_big = i_half small_dist = self.distances[i_small] return i_small / self.nr_points + (length - small_dist) * (self.distances[i_big] - small_dist) # interpolated length