# test_structuralholes.py - unit tests for the structuralholes module # # Copyright 2017 NetworkX developers. # # This file is part of NetworkX. # # NetworkX is distributed under a BSD license; see LICENSE.txt for more # information. """Unit tests for the :mod:`networkx.algorithms.structuralholes` module.""" import math import networkx as nx from networkx.testing import almost_equal class TestStructuralHoles(object): """Unit tests for computing measures of structural holes. The expected values for these functions were originally computed using the proprietary software `UCINET`_ and the free software `IGraph`_ , and then computed by hand to make sure that the results are correct. .. _UCINET: https://sites.google.com/site/ucinetsoftware/home .. _IGraph: http://igraph.org/ """ def setup(self): self.D = nx.DiGraph() self.D.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)]) self.D_weights = {(0, 1): 2, (0, 2): 2, (1, 0): 1, (2, 1): 1} # Example from http://www.analytictech.com/connections/v20(1)/holes.htm self.G = nx.Graph() self.G.add_edges_from([ ('A', 'B'), ('A', 'F'), ('A', 'G'), ('A', 'E'), ('E', 'G'), ('F', 'G'), ('B', 'G'), ('B', 'D'), ('D', 'G'), ('G', 'C'), ]) self.G_weights = { ('A', 'B'): 2, ('A', 'F'): 3, ('A', 'G'): 5, ('A', 'E'): 2, ('E', 'G'): 8, ('F', 'G'): 3, ('B', 'G'): 4, ('B', 'D'): 1, ('D', 'G'): 3, ('G', 'C'): 10, } def test_constraint_directed(self): constraint = nx.constraint(self.D) assert almost_equal(constraint[0], 1.003, places=3) assert almost_equal(constraint[1], 1.003, places=3) assert almost_equal(constraint[2], 1.389, places=3) def test_effective_size_directed(self): effective_size = nx.effective_size(self.D) assert almost_equal(effective_size[0], 1.167, places=3) assert almost_equal(effective_size[1], 1.167, places=3) assert almost_equal(effective_size[2], 1, places=3) def test_constraint_weighted_directed(self): D = self.D.copy() nx.set_edge_attributes(D, self.D_weights, 'weight') constraint = nx.constraint(D, weight='weight') assert almost_equal(constraint[0], 0.840, places=3) assert almost_equal(constraint[1], 1.143, places=3) assert almost_equal(constraint[2], 1.378, places=3) def test_effective_size_weighted_directed(self): D = self.D.copy() nx.set_edge_attributes(D, self.D_weights, 'weight') effective_size = nx.effective_size(D, weight='weight') assert almost_equal(effective_size[0], 1.567, places=3) assert almost_equal(effective_size[1], 1.083, places=3) assert almost_equal(effective_size[2], 1, places=3) def test_constraint_undirected(self): constraint = nx.constraint(self.G) assert almost_equal(constraint['G'], 0.400, places=3) assert almost_equal(constraint['A'], 0.595, places=3) assert almost_equal(constraint['C'], 1, places=3) def test_effective_size_undirected_borgatti(self): effective_size = nx.effective_size(self.G) assert almost_equal(effective_size['G'], 4.67, places=2) assert almost_equal(effective_size['A'], 2.50, places=2) assert almost_equal(effective_size['C'], 1, places=2) def test_effective_size_undirected(self): G = self.G.copy() nx.set_edge_attributes(G, 1, 'weight') effective_size = nx.effective_size(G, weight='weight') assert almost_equal(effective_size['G'], 4.67, places=2) assert almost_equal(effective_size['A'], 2.50, places=2) assert almost_equal(effective_size['C'], 1, places=2) def test_constraint_weighted_undirected(self): G = self.G.copy() nx.set_edge_attributes(G, self.G_weights, 'weight') constraint = nx.constraint(G, weight='weight') assert almost_equal(constraint['G'], 0.299, places=3) assert almost_equal(constraint['A'], 0.795, places=3) assert almost_equal(constraint['C'], 1, places=3) def test_effective_size_weighted_undirected(self): G = self.G.copy() nx.set_edge_attributes(G, self.G_weights, 'weight') effective_size = nx.effective_size(G, weight='weight') assert almost_equal(effective_size['G'], 5.47, places=2) assert almost_equal(effective_size['A'], 2.47, places=2) assert almost_equal(effective_size['C'], 1, places=2) def test_constraint_isolated(self): G = self.G.copy() G.add_node(1) constraint = nx.constraint(G) assert math.isnan(constraint[1]) def test_effective_size_isolated(self): G = self.G.copy() G.add_node(1) nx.set_edge_attributes(G, self.G_weights, 'weight') effective_size = nx.effective_size(G, weight='weight') assert math.isnan(effective_size[1]) def test_effective_size_borgatti_isolated(self): G = self.G.copy() G.add_node(1) effective_size = nx.effective_size(G) assert math.isnan(effective_size[1])