"""Unit tests for matplotlib drawing functions.""" import os import itertools import pytest mpl = pytest.importorskip('matplotlib') mpl.use('PS', warn=False) plt = pytest.importorskip('matplotlib.pyplot') plt.rcParams['text.usetex'] = False import networkx as nx class TestPylab(object): @classmethod def setup_class(cls): cls.G = nx.barbell_graph(4, 6) def test_draw(self): try: functions = [nx.draw_circular, nx.draw_kamada_kawai, nx.draw_planar, nx.draw_random, nx.draw_spectral, nx.draw_spring, nx.draw_shell] options = [{ 'node_color': 'black', 'node_size': 100, 'width': 3, }] for function, option in itertools.product(functions, options): function(self.G, **option) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass def test_draw_shell_nlist(self): try: nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))] nx.draw_shell(self.G, nlist=nlist) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass def test_edge_colormap(self): colors = range(self.G.number_of_edges()) nx.draw_spring(self.G, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True) plt.show() def test_arrows(self): nx.draw_spring(self.G.to_directed()) plt.show() def test_edge_colors_and_widths(self): pos = nx.circular_layout(self.G) for G in (self.G, self.G.to_directed()): nx.draw_networkx_nodes(G, pos, node_color=[(1.0, 1.0, 0.2, 0.5)]) nx.draw_networkx_labels(G, pos) # edge with default color and width nx.draw_networkx_edges(G, pos, edgelist=[(0, 1)], width=None, edge_color=None) # edges with global color strings and widths in lists nx.draw_networkx_edges(G, pos, edgelist=[(0, 2), (0, 3)], width=[3], edge_color=['r']) # edges with color strings and widths for each edge nx.draw_networkx_edges(G, pos, edgelist=[(0, 2), (0, 3)], width=[1, 3], edge_color=['r', 'b']) # edges with fewer color strings and widths than edges nx.draw_networkx_edges(G, pos, edgelist=[(1, 2), (1, 3), (2, 3), (3, 4)], width=[1, 3], edge_color=['g', 'm', 'c']) # edges with more color strings and widths than edges nx.draw_networkx_edges(G, pos, edgelist=[(3, 4)], width=[1, 2, 3, 4], edge_color=['r', 'b', 'g', 'k']) # with rgb tuple and 3 edges - is interpreted with cmap nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7)], edge_color=(1.0, 0.4, 0.3)) # with rgb tuple in list nx.draw_networkx_edges(G, pos, edgelist=[(7, 8), (8, 9)], edge_color=[(0.4, 1.0, 0.0)]) # with rgba tuple and 4 edges - is interpretted with cmap nx.draw_networkx_edges(G, pos, edgelist=[(9, 10), (10, 11), (10, 12), (10, 13)], edge_color=(0.0, 1.0, 1.0, 0.5)) # with rgba tuple in list nx.draw_networkx_edges(G, pos, edgelist=[(9, 10), (10, 11), (10, 12), (10, 13)], edge_color=[(0.0, 1.0, 1.0, 0.5)]) # with color string and global alpha nx.draw_networkx_edges(G, pos, edgelist=[(11, 12), (11, 13)], edge_color='purple', alpha=0.2) # with color string in a list nx.draw_networkx_edges(G, pos, edgelist=[(11, 12), (11, 13)], edge_color=['purple']) # with single edge and hex color string nx.draw_networkx_edges(G, pos, edgelist=[(12, 13)], edge_color='#1f78b4f0') # edge_color as numeric using vmin, vmax nx.draw_networkx_edges(G, pos, edgelist=[(7, 8), (8, 9)], edge_color=[0.2, 0.5], edge_vmin=0.1, edge_max=0.6) plt.show() def test_labels_and_colors(self): G = nx.cubical_graph() pos = nx.spring_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color='r', node_size=500, alpha=0.75) nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color='b', node_size=500, alpha=[0.25, 0.5, 0.75, 1.0]) # edges nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) nx.draw_networkx_edges(G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], width=8, alpha=0.5, edge_color='r') nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], width=8, alpha=0.5, edge_color='b') nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], min_source_margin=0.5, min_target_margin=0.75, width=8, edge_color='b') # some math labels labels = {} labels[0] = r'$a$' labels[1] = r'$b$' labels[2] = r'$c$' labels[3] = r'$d$' labels[4] = r'$\alpha$' labels[5] = r'$\beta$' labels[6] = r'$\gamma$' labels[7] = r'$\delta$' nx.draw_networkx_labels(G, pos, labels, font_size=16) nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False) nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): '4-5'}) plt.show() def test_axes(self): fig, ax = plt.subplots() nx.draw(self.G, ax=ax) def test_empty_graph(self): G = nx.Graph() nx.draw(G) def test_multigraph_edgelist_tuples(self): # See Issue #3295 G = nx.path_graph(3, create_using=nx.MultiDiGraph) nx.draw_networkx(G, edgelist=[(0, 1, 0)]) nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20]) def test_alpha_iter(self): pos = nx.random_layout(self.G) # with fewer alpha elements than nodes plt.subplot(131) nx.draw_networkx_nodes(self.G, pos, alpha=[0.1, 0.2]) # with equal alpha elements and nodes num_nodes = len(self.G.nodes) alpha = [x / num_nodes for x in range(num_nodes)] colors = range(num_nodes) plt.subplot(132) nx.draw_networkx_nodes(self.G, pos, node_color=colors, alpha=alpha) # with more alpha elements than nodes alpha.append(1) plt.subplot(133) nx.draw_networkx_nodes(self.G, pos, alpha=alpha)