import pytest import networkx as nx from networkx.algorithms import flow from networkx.algorithms.connectivity import minimum_st_edge_cut from networkx.algorithms.connectivity import minimum_st_node_cut from networkx.utils import arbitrary_element flow_funcs = [ flow.boykov_kolmogorov, flow.dinitz, flow.edmonds_karp, flow.preflow_push, flow.shortest_augmenting_path, ] msg = "Assertion failed in function: {0}" # Tests for node and edge cutsets def _generate_no_biconnected(max_attempts=50): attempts = 0 while True: G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) if nx.is_connected(G) and not nx.is_biconnected(G): attempts = 0 yield G else: if attempts >= max_attempts: msg = "Tried %d times: no suitable Graph." % attempts raise Exception(msg % max_attempts) else: attempts += 1 def test_articulation_points(): Ggen = _generate_no_biconnected() for flow_func in flow_funcs: for i in range(1): # change 1 to 3 or more for more realizations. G = next(Ggen) cut = nx.minimum_node_cut(G, flow_func=flow_func) assert len(cut) == 1, msg.format(flow_func.__name__) assert cut.pop() in set(nx.articulation_points(G)), msg.format(flow_func.__name__) def test_brandes_erlebach_book(): # Figure 1 chapter 7: Connectivity # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf G = nx.Graph() G.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 6), (3, 4), (3, 6), (4, 6), (4, 7), (5, 7), (6, 8), (6, 9), (7, 8), (7, 10), (8, 11), (9, 10), (9, 11), (10, 11)]) for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cutsets assert 3 == len(nx.minimum_edge_cut(G, 1, 11, **kwargs)), msg.format(flow_func.__name__) edge_cut = nx.minimum_edge_cut(G, **kwargs) # Node 5 has only two edges assert 2 == len(edge_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_edges_from(edge_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) # node cuts assert set([6, 7]) == minimum_st_node_cut(G, 1, 11, **kwargs), msg.format(flow_func.__name__) assert set([6, 7]) == nx.minimum_node_cut(G, 1, 11, **kwargs), msg.format(flow_func.__name__) node_cut = nx.minimum_node_cut(G, **kwargs) assert 2 == len(node_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_nodes_from(node_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) def test_white_harary_paper(): # Figure 1b white and harary (2001) # http://eclectic.ss.uci.edu/~drwhite/sm-w23.PDF # A graph with high adhesion (edge connectivity) and low cohesion # (node connectivity) G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) G.remove_node(7) for i in range(4, 7): G.add_edge(0, i) G = nx.disjoint_union(G, nx.complete_graph(4)) G.remove_node(G.order() - 1) for i in range(7, 10): G.add_edge(0, i) for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert 3 == len(edge_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_edges_from(edge_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert set([0]) == node_cut, msg.format(flow_func.__name__) H = G.copy() H.remove_nodes_from(node_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) def test_petersen_cutset(): G = nx.petersen_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert 3 == len(edge_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_edges_from(edge_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert 3 == len(node_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_nodes_from(node_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) def test_octahedral_cutset(): G = nx.octahedral_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert 4 == len(edge_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_edges_from(edge_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert 4 == len(node_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_nodes_from(node_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) def test_icosahedral_cutset(): G = nx.icosahedral_graph() for flow_func in flow_funcs: kwargs = dict(flow_func=flow_func) # edge cuts edge_cut = nx.minimum_edge_cut(G, **kwargs) assert 5 == len(edge_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_edges_from(edge_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) # node cuts node_cut = nx.minimum_node_cut(G, **kwargs) assert 5 == len(node_cut), msg.format(flow_func.__name__) H = G.copy() H.remove_nodes_from(node_cut) assert not nx.is_connected(H), msg.format(flow_func.__name__) def test_node_cutset_exception(): G = nx.Graph() G.add_edges_from([(1, 2), (3, 4)]) for flow_func in flow_funcs: pytest.raises(nx.NetworkXError, nx.minimum_node_cut, G, flow_func=flow_func) def test_node_cutset_random_graphs(): for flow_func in flow_funcs: for i in range(3): G = nx.fast_gnp_random_graph(50, 0.25, seed=42) if not nx.is_connected(G): ccs = iter(nx.connected_components(G)) start = arbitrary_element(next(ccs)) G.add_edges_from((start, arbitrary_element(c)) for c in ccs) cutset = nx.minimum_node_cut(G, flow_func=flow_func) assert nx.node_connectivity(G) == len(cutset), msg.format(flow_func.__name__) G.remove_nodes_from(cutset) assert not nx.is_connected(G), msg.format(flow_func.__name__) def test_edge_cutset_random_graphs(): for flow_func in flow_funcs: for i in range(3): G = nx.fast_gnp_random_graph(50, 0.25, seed=42) if not nx.is_connected(G): ccs = iter(nx.connected_components(G)) start = arbitrary_element(next(ccs)) G.add_edges_from((start, arbitrary_element(c)) for c in ccs) cutset = nx.minimum_edge_cut(G, flow_func=flow_func) assert nx.edge_connectivity(G) == len(cutset), msg.format(flow_func.__name__) G.remove_edges_from(cutset) assert not nx.is_connected(G), msg.format(flow_func.__name__) def test_empty_graphs(): G = nx.Graph() D = nx.DiGraph() for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: for flow_func in flow_funcs: pytest.raises(nx.NetworkXPointlessConcept, interface_func, G, flow_func=flow_func) pytest.raises(nx.NetworkXPointlessConcept, interface_func, D, flow_func=flow_func) def test_unbounded(): G = nx.complete_graph(5) for flow_func in flow_funcs: assert 4 == len(minimum_st_edge_cut(G, 1, 4, flow_func=flow_func)) def test_missing_source(): G = nx.path_graph(4) for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: for flow_func in flow_funcs: pytest.raises(nx.NetworkXError, interface_func, G, 10, 1, flow_func=flow_func) def test_missing_target(): G = nx.path_graph(4) for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: for flow_func in flow_funcs: pytest.raises(nx.NetworkXError, interface_func, G, 1, 10, flow_func=flow_func) def test_not_weakly_connected(): G = nx.DiGraph() nx.add_path(G, [1, 2, 3]) nx.add_path(G, [4, 5]) for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: for flow_func in flow_funcs: pytest.raises(nx.NetworkXError, interface_func, G, flow_func=flow_func) def test_not_connected(): G = nx.Graph() nx.add_path(G, [1, 2, 3]) nx.add_path(G, [4, 5]) for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: for flow_func in flow_funcs: pytest.raises(nx.NetworkXError, interface_func, G, flow_func=flow_func) def tests_min_cut_complete(): G = nx.complete_graph(5) for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: for flow_func in flow_funcs: assert 4 == len(interface_func(G, flow_func=flow_func)) def tests_min_cut_complete_directed(): G = nx.complete_graph(5) G = G.to_directed() for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: for flow_func in flow_funcs: assert 4 == len(interface_func(G, flow_func=flow_func)) def tests_minimum_st_node_cut(): G = nx.Graph() G.add_nodes_from([0, 1, 2, 3, 7, 8, 11, 12]) G.add_edges_from([(7, 11), (1, 11), (1, 12), (12, 8), (0, 1)]) nodelist = minimum_st_node_cut(G, 7, 11) assert(nodelist == []) def test_invalid_auxiliary(): G = nx.complete_graph(5) pytest.raises(nx.NetworkXError, minimum_st_node_cut, G, 0, 3, auxiliary=G) def test_interface_only_source(): G = nx.complete_graph(5) for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: pytest.raises(nx.NetworkXError, interface_func, G, s=0) def test_interface_only_target(): G = nx.complete_graph(5) for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: pytest.raises(nx.NetworkXError, interface_func, G, t=3)