This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/networkx/algorithms/approximation/tests/test_kcomponents.py
2020-07-30 01:16:18 +02:00

265 lines
8.9 KiB
Python

# Test for approximation to k-components algorithm
import pytest
import networkx as nx
from networkx.algorithms.approximation import k_components
from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same
def build_k_number_dict(k_components):
k_num = {}
for k, comps in sorted(k_components.items()):
for comp in comps:
for node in comp:
k_num[node] = k
return k_num
##
# Some nice synthetic graphs
##
def graph_example_1():
G = nx.convert_node_labels_to_integers(nx.grid_graph([5, 5]),
label_attribute='labels')
rlabels = nx.get_node_attributes(G, 'labels')
labels = {v: k for k, v in rlabels.items()}
for nodes in [(labels[(0, 0)], labels[(1, 0)]),
(labels[(0, 4)], labels[(1, 4)]),
(labels[(3, 0)], labels[(4, 0)]),
(labels[(3, 4)], labels[(4, 4)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node + 1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node + 2, new_node + 11)
G.add_edge(new_node + 3, new_node + 12)
G.add_edge(new_node + 4, new_node + 13)
# Add another K5 sharing a node
G = nx.disjoint_union(G, K)
nbrs = G[new_node + 10]
G.remove_node(new_node + 10)
for nbr in nbrs:
G.add_edge(new_node + 17, nbr)
G.add_edge(new_node + 16, new_node + 5)
return G
def torrents_and_ferraro_graph():
G = nx.convert_node_labels_to_integers(nx.grid_graph([5, 5]),
label_attribute='labels')
rlabels = nx.get_node_attributes(G, 'labels')
labels = {v: k for k, v in rlabels.items()}
for nodes in [(labels[(0, 4)], labels[(1, 4)]),
(labels[(3, 4)], labels[(4, 4)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node + 1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node + 2, new_node + 11)
G.add_edge(new_node + 3, new_node + 12)
G.add_edge(new_node + 4, new_node + 13)
# Add another K5 sharing a node
G = nx.disjoint_union(G, K)
nbrs = G[new_node + 10]
G.remove_node(new_node + 10)
for nbr in nbrs:
G.add_edge(new_node + 17, nbr)
# Commenting this makes the graph not biconnected !!
# This stupid mistake make one reviewer very angry :P
G.add_edge(new_node + 16, new_node + 8)
for nodes in [(labels[(0, 0)], labels[(1, 0)]),
(labels[(3, 0)], labels[(4, 0)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node + 1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node + 2, new_node + 11)
G.add_edge(new_node + 3, new_node + 12)
G.add_edge(new_node + 4, new_node + 13)
# Add another K5 sharing two nodes
G = nx.disjoint_union(G, K)
nbrs = G[new_node + 10]
G.remove_node(new_node + 10)
for nbr in nbrs:
G.add_edge(new_node + 17, nbr)
nbrs2 = G[new_node + 9]
G.remove_node(new_node + 9)
for nbr in nbrs2:
G.add_edge(new_node + 18, nbr)
return G
# Helper function
def _check_connectivity(G):
result = k_components(G)
for k, components in result.items():
if k < 3:
continue
for component in components:
C = G.subgraph(component)
K = nx.node_connectivity(C)
assert K >= k
def test_torrents_and_ferraro_graph():
G = torrents_and_ferraro_graph()
_check_connectivity(G)
def test_example_1():
G = graph_example_1()
_check_connectivity(G)
def test_karate_0():
G = nx.karate_club_graph()
_check_connectivity(G)
def test_karate_1():
karate_k_num = {0: 4, 1: 4, 2: 4, 3: 4, 4: 3, 5: 3, 6: 3, 7: 4, 8: 4, 9: 2,
10: 3, 11: 1, 12: 2, 13: 4, 14: 2, 15: 2, 16: 2, 17: 2, 18: 2,
19: 3, 20: 2, 21: 2, 22: 2, 23: 3, 24: 3, 25: 3, 26: 2, 27: 3,
28: 3, 29: 3, 30: 4, 31: 3, 32: 4, 33: 4}
approx_karate_k_num = karate_k_num.copy()
approx_karate_k_num[24] = 2
approx_karate_k_num[25] = 2
G = nx.karate_club_graph()
k_comps = k_components(G)
k_num = build_k_number_dict(k_comps)
assert k_num in (karate_k_num, approx_karate_k_num)
def test_example_1_detail_3_and_4():
G = graph_example_1()
result = k_components(G)
# In this example graph there are 8 3-components, 4 with 15 nodes
# and 4 with 5 nodes.
assert len(result[3]) == 8
assert len([c for c in result[3] if len(c) == 15]) == 4
assert len([c for c in result[3] if len(c) == 5]) == 4
# There are also 8 4-components all with 5 nodes.
assert len(result[4]) == 8
assert all(len(c) == 5 for c in result[4])
# Finally check that the k-components detected have actually node
# connectivity >= k.
for k, components in result.items():
if k < 3:
continue
for component in components:
K = nx.node_connectivity(G.subgraph(component))
assert K >= k
def test_directed():
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.gnp_random_graph(10, 0.4, directed=True)
kc = k_components(G)
def test_same():
equal = {'A': 2, 'B': 2, 'C': 2}
slightly_different = {'A': 2, 'B': 1, 'C': 2}
different = {'A': 2, 'B': 8, 'C': 18}
assert _same(equal)
assert not _same(slightly_different)
assert _same(slightly_different, tol=1)
assert not _same(different)
assert not _same(different, tol=4)
class TestAntiGraph:
@classmethod
def setup_class(cls):
cls.Gnp = nx.gnp_random_graph(20, 0.8)
cls.Anp = _AntiGraph(nx.complement(cls.Gnp))
cls.Gd = nx.davis_southern_women_graph()
cls.Ad = _AntiGraph(nx.complement(cls.Gd))
cls.Gk = nx.karate_club_graph()
cls.Ak = _AntiGraph(nx.complement(cls.Gk))
cls.GA = [(cls.Gnp, cls.Anp),
(cls.Gd, cls.Ad),
(cls.Gk, cls.Ak)]
def test_size(self):
for G, A in self.GA:
n = G.order()
s = len(list(G.edges())) + len(list(A.edges()))
assert s == (n * (n - 1)) / 2
def test_degree(self):
for G, A in self.GA:
assert sorted(G.degree()) == sorted(A.degree())
def test_core_number(self):
for G, A in self.GA:
assert nx.core_number(G) == nx.core_number(A)
def test_connected_components(self):
for G, A in self.GA:
gc = [set(c) for c in nx.connected_components(G)]
ac = [set(c) for c in nx.connected_components(A)]
for comp in ac:
assert comp in gc
def test_adj(self):
for G, A in self.GA:
for n, nbrs in G.adj.items():
a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items())
g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items())
assert a_adj == g_adj
def test_adjacency(self):
for G, A in self.GA:
a_adj = list(A.adjacency())
for n, nbrs in G.adjacency():
assert (n, set(nbrs)) in a_adj
def test_neighbors(self):
for G, A in self.GA:
node = list(G.nodes())[0]
assert set(G.neighbors(node)) == set(A.neighbors(node))
def test_node_not_in_graph(self):
for G, A in self.GA:
node = 'non_existent_node'
pytest.raises(nx.NetworkXError, A.neighbors, node)
pytest.raises(nx.NetworkXError, G.neighbors, node)
def test_degree_thingraph(self):
for G, A in self.GA:
node = list(G.nodes())[0]
nodes = list(G.nodes())[1:4]
assert G.degree(node) == A.degree(node)
assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree())
# AntiGraph is a ThinGraph, so all the weights are 1
assert (sum(d for n, d in A.degree()) ==
sum(d for n, d in A.degree(weight='weight')))
assert (sum(d for n, d in G.degree(nodes)) ==
sum(d for n, d in A.degree(nodes)))