This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-08-30 12:36:33 +02:00

126 lines
4.5 KiB
Python

from inkscape_helper.PathSegment import *
from inkscape_helper.Coordinate import Coordinate
from inkscape_helper.Ellipse import Ellipse
from math import sqrt, pi
import copy
class EllipticArc(PathSegment):
ell_dict = {}
def __init__(self, start, end, rx, ry, axis_rot, pos_dir=True, large_arc=False):
self.rx = rx
self.ry = ry
# calculate ellipse center
# the center is on two ellipses one with its center at the start point, the other at the end point
# for simplicity take the one ellipse at the origin and the other with offset (tx, ty),
# find the center and translate back to the original offset at the end
axis_rot *= pi / 180 # convert to radians
# start and end are mutable objects, copy to avoid modifying them
r_start = copy.copy(start)
r_end = copy.copy(end)
r_start.t -= axis_rot
r_end.t -= axis_rot
end_o = r_end - r_start # offset end vector
tx = end_o.x
ty = end_o.y
# some helper variables for the intersection points
# used sympy to come up with the equations
ff = (rx**2*ty**2 + ry**2*tx**2)
cx = rx**2*ry*tx*ty**2 + ry**3*tx**3
cy = rx*ty*ff
sx = rx*ty*sqrt(4*rx**4*ry**2*ty**2 - rx**4*ty**4 + 4*rx**2*ry**4*tx**2 - 2*rx**2*ry**2*tx**2*ty**2 - ry**4*tx**4)
sy = ry*tx*sqrt(-ff*(-4*rx**2*ry**2 + rx**2*ty**2 + ry**2*tx**2))
# intersection points
c1 = Coordinate((cx - sx) / (2*ry*ff), (cy + sy) / (2*rx*ff))
c2 = Coordinate((cx + sx) / (2*ry*ff), (cy - sy) / (2*rx*ff))
if end_o.cross_norm(c1 - r_start) < 0: # c1 is to the left of end_o
left = c1
right = c2
else:
left = c2
right = c1
if pos_dir != large_arc: #center should be on the left of end_o
center_o = left
else: #center should be on the right of end_o
center_o = right
#re-use ellipses with same rx, ry to save some memory
if (rx, ry) in self.ell_dict:
self.ellipse = self.ell_dict[(rx, ry)]
else:
self.ellipse = Ellipse(rx, ry)
self.ell_dict[(rx, ry)] = self.ellipse
self.start = start
self.end = end
self.axis_rot = axis_rot
self.pos_dir = pos_dir
self.large_arc = large_arc
self.start_theta = self.ellipse.theta_at_angle((-center_o).t)
self.end_theta = self.ellipse.theta_at_angle((end_o - center_o).t)
# translate center back to original offset
center_o.t += axis_rot
self.center = center_o + start
@property
def length(self):
return self.ellipse.dist_from_theta(self.start_theta, self.end_theta)
def t_to_theta(self, t):
"""convert t (always between 0 and 1) to angle theta"""
start = self.start_theta
end = self.end_theta
if self.pos_dir and end < start:
end += 2 * pi
if not self.pos_dir and start < end:
end -= 2 * pi
arc_size = end - start
return (start + (end - start) * t) % (2 * pi)
def theta_to_t(self, theta):
full_arc_size = (self.end_theta - self.start_theta + 2 * pi) % (2 * pi)
theta_arc_size = (theta - self.start_theta + 2 * pi) % (2 * pi)
return theta_arc_size / full_arc_size
def curvature(self, t):
theta = self.t_to_theta(t)
return self.ellipse.curvature(theta)
def tangent(self, t):
theta = self.t_to_theta(t)
return self.ellipse.tangent(theta)
def t_at_length(self, length):
"""interpolated t where the curve is at the given length"""
theta = self.ellipse.theta_from_dist(length, self.start_theta)
return self.theta_to_t(theta)
def length_at_t(self, t):
return self.ellipse.dist_from_theta(self.start_theta, self.t_to_theta(t))
def pathpoint_at_t(self, t):
"""pathpoint on the curve from t=0 to point at t."""
centered = self.ellipse.coordinate_at_theta(self.t_to_theta(t))
centered.t += self.axis_rot
return PathPoint(t, centered + self.center, self.tangent(t), self.curvature(t), self.length_at_t(t))
# identical to Bezier code
def subdivide(self, part_length, start_offset=0):
nr_parts = int((self.length - start_offset) // part_length)
k_o = start_offset / self.length
k2t = lambda k : k_o + k * part_length / self.length
points = [self.pathpoint_at_t(k2t(k)) for k in range(nr_parts + 1)]
return(points, self.length - points[-1].c_dist)