This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/fablabchemnitz/collar/collar.py
2021-07-23 02:36:56 +02:00

754 lines
38 KiB
Python

#!/usr/bin/env python3
#
# Copyright (C) [2021] [Joseph Zakar], [observing@gmail.com]
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
Given a set of parameters for two polygons, this program generates paper
models of (1) the two polygons; (2) a collar (divided into segments if desired)
represented by a strip with tabs and score lines; and (3) wrapper(s) for
covering the tabbed strip(s).
"""
import inkex
from inkex import Color
import math
import copy
class pathStruct(object):
def __init__(self):
self.id="path0000"
self.path=[]
self.enclosed=False
def __str__(self):
return self.path
class pnPoint(object):
# This class came from https://github.com/JoJocoder/PNPOLY
def __init__(self,p):
self.p=p
def __str__(self):
return self.p
def InPolygon(self,polygon,BoundCheck=False):
inside=False
if BoundCheck:
minX=polygon[0][0]
maxX=polygon[0][0]
minY=polygon[0][1]
maxY=polygon[0][1]
for p in polygon:
minX=min(p[0],minX)
maxX=max(p[0],maxX)
minY=min(p[1],minY)
maxY=max(p[1],maxY)
if self.p[0]<minX or self.p[0]>maxX or self.p[1]<minY or self.p[1]>maxY:
return False
j=len(polygon)-1
for i in range(len(polygon)):
if ((polygon[i][1]>self.p[1])!=(polygon[j][1]>self.p[1]) and (self.p[0]<(polygon[j][0]-polygon[i][0])*(self.p[1]-polygon[i][1])/( polygon[j][1] - polygon[i][1] ) + polygon[i][0])):
inside =not inside
j=i
return inside
class Collar(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--usermenu")
pars.add_argument("--unit", default="in",help="Dimensional units")
pars.add_argument("--polysides", type=int, default=6,help="Number of Polygon Sides")
pars.add_argument("--poly1size", type=float, default=5.0, help="Size of Polygon 1 in dimensional units")
pars.add_argument("--poly2size", type=float, default=3.0, help="Size of Polygon 2 in dimensional units")
pars.add_argument("--collarheight", type=float, default=2.0, help="Height of collar in dimensional units")
pars.add_argument("--collarparts", type=int, default=1,help="Number of parts to divide collar into")
pars.add_argument("--dashlength", type=float, default=0.1, help="Length of dashline in dimensional units (zero for solid line)")
pars.add_argument("--tabangle", type=float, default=45.0, help="Angle of tab edges in degrees")
pars.add_argument("--tabheight", type=float, default=0.4, help="Height of tab in dimensional units")
pars.add_argument("--generate_decorative_wrapper", type=inkex.Boolean, default=False, help="Generate decorative wrapper")
pars.add_argument("--cosmetic_dash_style", type=inkex.Boolean, default=False, help="Cosmetic dash lines")
pars.add_argument("--color_solid", type=Color, default='4278190335', help="Solid line color")
pars.add_argument("--color_dash", type=Color, default='65535', help="Solid line dash")
#draw SVG line segment(s) between the given (raw) points
def drawline(self, dstr, name, parent, sstr=None):
line_style = {'stroke':self.options.color_solid,'stroke-width':'0.25','fill':'#eeeeee'}
if sstr == None:
stylestr = str(inkex.Style(line_style))
else:
stylestr = sstr
el = parent.add(inkex.PathElement())
el.path = dstr
el.style = stylestr
el.label = name
def makepoly(self, toplength, numpoly):
r = toplength/(2*math.sin(math.pi/numpoly))
pstr = ''
for ppoint in range(0,numpoly):
xn = r*math.cos(2*math.pi*ppoint/numpoly)
yn = r*math.sin(2*math.pi*ppoint/numpoly)
if ppoint == 0:
pstr = 'M '
else:
pstr += ' L '
pstr += str(xn) + ',' + str(yn)
pstr = pstr + ' Z'
return pstr
# Thanks to Gabriel Eng for his python implementation of https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
def findIntersection(self, x1,y1,x2,y2,x3,y3,x4,y4):
px= ( (x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
py= ( (x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
return px, py
def insidePath(self, path, p):
point = pnPoint((p.x, p.y))
pverts = []
for pnum in path:
pverts.append((pnum.x, pnum.y))
isInside = point.InPolygon(pverts, True)
return isInside # True if point p is inside path
def makescore(self, pt1, pt2, dashlength):
# Draws a dashed line of dashlength between two points
# Dash = dashlength (in inches) space followed by dashlength mark
# if dashlength is zero, we want a solid line
apt1 = inkex.paths.Line(0.0,0.0)
apt2 = inkex.paths.Line(0.0,0.0)
ddash = ''
if math.isclose(dashlength, 0.0):
#inkex.utils.debug("Draw solid dashline")
ddash = ' M '+str(pt1.x)+','+str(pt1.y)+' L '+str(pt2.x)+','+str(pt2.y)
else:
if math.isclose(pt1.y, pt2.y):
#inkex.utils.debug("Draw horizontal dashline")
if pt1.x < pt2.x:
xcushion = pt2.x - dashlength
xpt = pt1.x
ypt = pt1.y
else:
xcushion = pt1.x - dashlength
xpt = pt2.x
ypt = pt2.y
ddash = ''
done = False
while not(done):
if (xpt + dashlength*2) <= xcushion:
xpt = xpt + dashlength
ddash = ddash + ' M ' + str(xpt) + ',' + str(ypt)
xpt = xpt + dashlength
ddash = ddash + ' L ' + str(xpt) + ',' + str(ypt)
else:
done = True
elif math.isclose(pt1.x, pt2.x):
#inkex.utils.debug("Draw vertical dashline")
if pt1.y < pt2.y:
ycushion = pt2.y - dashlength
xpt = pt1.x
ypt = pt1.y
else:
ycushion = pt1.y - dashlength
xpt = pt2.x
ypt = pt2.y
ddash = ''
done = False
while not(done):
if(ypt + dashlength*2) <= ycushion:
ypt = ypt + dashlength
ddash = ddash + ' M ' + str(xpt) + ',' + str(ypt)
ypt = ypt + dashlength
ddash = ddash + ' L ' + str(xpt) + ',' + str(ypt)
else:
done = True
else:
#inkex.utils.debug("Draw sloping dashline")
if pt1.y > pt2.y:
apt1.x = pt1.x
apt1.y = pt1.y
apt2.x = pt2.x
apt2.y = pt2.y
else:
apt1.x = pt2.x
apt1.y = pt2.y
apt2.x = pt1.x
apt2.y = pt1.y
m = (apt1.y-apt2.y)/(apt1.x-apt2.x)
theta = math.atan(m)
msign = (m>0) - (m<0)
ycushion = apt2.y + dashlength*math.sin(theta)
xcushion = apt2.x + msign*dashlength*math.cos(theta)
ddash = ''
xpt = apt1.x
ypt = apt1.y
done = False
while not(done):
nypt = ypt - dashlength*2*math.sin(theta)
nxpt = xpt - msign*dashlength*2*math.cos(theta)
if (nypt >= ycushion) and (((m<0) and (nxpt <= xcushion)) or ((m>0) and (nxpt >= xcushion))):
# move to end of space / beginning of mark
xpt = xpt - msign*dashlength*math.cos(theta)
ypt = ypt - msign*dashlength*math.sin(theta)
ddash = ddash + ' M ' + str(xpt) + ',' + str(ypt)
# draw the mark
xpt = xpt - msign*dashlength*math.cos(theta)
ypt = ypt - msign*dashlength*math.sin(theta)
ddash = ddash + ' L ' + str(xpt) + ',' + str(ypt)
else:
done = True
return ddash
def detectIntersect(self, x1, y1, x2, y2, x3, y3, x4, y4):
td = (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)
if td == 0:
# These line segments are parallel
return False
t = ((x1-x3)*(y3-y4)-(y1-y3)*(x3-x4))/td
if (0.0 <= t) and (t <= 1.0):
return True
else:
return False
def makeTab(self, tpath, pt1, pt2, tabht, taba):
# tpath - the pathstructure containing pt1 and pt2
# pt1, pt2 - the two points where the tab will be inserted
# tabht - the height of the tab
# taba - the angle of the tab sides
# returns the two tab points in order of closest to pt1
tpt1 = inkex.paths.Line(0.0,0.0)
tpt2 = inkex.paths.Line(0.0,0.0)
currTabHt = tabht
currTabAngle = taba
testAngle = 1.0
testHt = currTabHt * 0.001
adjustTab = 0
tabDone = False
while not tabDone:
# Let's find out the orientation of the tab
if math.isclose(pt1.x, pt2.x):
# It's vertical. Let's try the right side
if pt1.y < pt2.y:
tpt1.x = pt1.x + testHt
tpt2.x = pt2.x + testHt
tpt1.y = pt1.y + testHt/math.tan(math.radians(testAngle))
tpt2.y = pt2.y - testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.x = pt1.x - currTabHt
tpt2.x = pt2.x - currTabHt
else:
tpt1.x = pt1.x + currTabHt
tpt2.x = pt2.x + currTabHt
tpt1.y = pt1.y + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.y = pt2.y - currTabHt/math.tan(math.radians(currTabAngle))
else: # pt2.y < pt1.y
tpt1.x = pt1.x + testHt
tpt2.x = pt2.x + testHt
tpt1.y = pt1.y - testHt/math.tan(math.radians(testAngle))
tpt2.y = pt2.y + testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.x = pt1.x - currTabHt
tpt2.x = pt2.x - currTabHt
else:
tpt1.x = pt1.x + currTabHt
tpt2.x = pt2.x + currTabHt
tpt1.y = pt1.y - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.y = pt2.y + currTabHt/math.tan(math.radians(currTabAngle))
elif math.isclose(pt1.y, pt2.y):
# It's horizontal. Let's try the top
if pt1.x < pt2.x:
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x + testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x - testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x - currTabHt/math.tan(math.radians(currTabAngle))
else: # pt2.x < pt1.x
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x - testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x + testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x + currTabHt/math.tan(math.radians(currTabAngle))
else: # the orientation is neither horizontal nor vertical
# Let's get the slope of the line between the points
# Because Inkscape's origin is in the upper-left corner,
# a positive slope (/) will yield a negative value
slope = (pt2.y - pt1.y)/(pt2.x - pt1.x)
# Let's get the angle to the horizontal
theta = math.degrees(math.atan(slope))
# Let's construct a horizontal tab
seglength = math.sqrt((pt1.x-pt2.x)**2 +(pt1.y-pt2.y)**2)
if slope < 0.0:
if pt1.x < pt2.x:
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x + testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x - testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x - currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
else: # pt1.x > pt2.x
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x - testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x + testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x + currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
else: # slope > 0.0
if pt1.x < pt2.x:
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x + testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x - testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x - currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
else: # pt1.x > pt2.x
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x - testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x + testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x + currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
# Check to see if any tabs intersect each other
if self.detectIntersect(pt1.x, pt1.y, tpt1.x, tpt1.y, pt2.x, pt2.y, tpt2.x, tpt2.y):
# Found an intersection.
if adjustTab == 0:
# Try increasing the tab angle in one-degree increments
currTabAngle = currTabAngle + 1.0
if currTabAngle > 88.0: # We're not increasing the tab angle above 89 degrees
adjustTab = 1
currTabAngle = taba
if adjustTab == 1:
# So, try reducing the tab height in 20% increments instead
currTabHt = currTabHt - tabht*0.2 # Could this lead to a zero tab_height?
if currTabHt <= 0.0:
# Give up
currTabHt = tabht
adjustTab = 2
if adjustTab == 2:
tabDone = True # Just show the failure
else:
tabDone = True
return tpt1,tpt2
def effect(self):
layer = self.svg.get_current_layer()
scale = self.svg.unittouu('1'+self.options.unit)
polysides = int(self.options.polysides)
poly1size = float(self.options.poly1size) * scale
poly2size = float(self.options.poly2size) * scale
collarht = float(self.options.collarheight) * scale
partcnt = int(self.options.collarparts)
tab_angle = float(self.options.tabangle)
tab_height = float(self.options.tabheight) * scale
dashlength = float(self.options.dashlength) * scale
polylarge = max(poly1size, poly2size) # Larger of the two polygons
polysmall = min(poly1size, poly2size) # Smaller of the two polygons
polysmallR = polysmall/2
polysmallr = polysmallR*math.cos(math.pi/polysides)
polysmalltabht = tab_height
if polysmallr < polysmalltabht:
polysmalltabht = polysmallr
wpaths = []
done = 0
# We go through this loop twice
# First time for the wrapper / decorative strip
# Second time for the model, scorelines, and the lids
while done < 2:
w1 = (polylarge)*(math.sin(math.pi/polysides))
w2 = (polysmall)*(math.sin(math.pi/polysides))
if done == 0:
# First time through, init the storage areas
pieces = []
nodes = []
nd = []
for i in range(4):
nd.append(inkex.paths.Line(0.0,0.0))
else:
# Second time through, empty the storage areas
i = 0
while i < polysides:
j = 0
while j < 4:
del pieces[i][0]
j = j + 1
i = i + 1
i = 0
while len(pieces) > 0:
del pieces[0]
i = i + 1
i = 0
while i < 4:
del nodes[0]
i = i + 1
for pn in range(polysides):
nodes.clear()
#what we need here is to skip the rotatation and just move the x and y if there is no difference between the polygon sizes.
#Added by Sue to handle equal polygons
if poly1size == poly2size:
nd[0].x = pn * w1
nd[0].y = collarht
nd[1].x = nd[0].x + w1
nd[1].y = nd[0].y
nd[2].x = nd[1].x
nd[2].y = nd[0].y - collarht
nd[3].x = nd[0].x
nd[3].y = nd[2].y
else:
if pn == 0:
nd[3].x = -w2/2
nd[3].y = (polysmall/2)*math.cos(math.pi/polysides)
nd[0].x = -w1/2
nd[0].y = (polylarge/2)*math.cos(math.pi/polysides)
vlen = math.sqrt(collarht**2 + (nd[0].y-nd[3].y)**2)
nd[0].y = nd[0].y + (vlen-(nd[0].y-nd[3].y))
nd[2].x = w2/2
nd[2].y = nd[3].y
nd[1].x = w1/2
nd[1].y = nd[0].y
ox,oy = self.findIntersection(nd[0].x,nd[0].y,nd[3].x,nd[3].y,nd[1].x,nd[1].y,nd[2].x,nd[2].y)
Q2 = math.degrees(math.atan((nd[0].y - oy)/(w1/2 - ox)))
Q1 = 90 - Q2
else:
dl = ''
for j in range(4):
if j == 0:
dl += 'M '
else:
dl += ' L '
dl += str(nd[j].x) + ',' + str(nd[j].y)
dl += ' Z'
p1 = inkex.paths.Path(path_d=dl)
p2 = p1.rotate(-2*Q1, (ox,oy))
for j in range(4):
nd[j].x = p2[j].x
nd[j].y = p2[j].y
for i in range(4):
nodes.append(copy.deepcopy(nd[i]))
pieces.append(copy.deepcopy(nodes))
dscores = []
if done == 0:
wpath = pathStruct() # We'll need this for makeTab
wpath.id = "c1"
for pc in range(partcnt):
dwrap = '' # Create the wrapper
dscores.clear()
sidecnt = math.ceil(polysides/partcnt)
if pc == partcnt - 1:
# Last time through creates the remainder of the pieces
sidecnt = polysides - math.ceil(polysides/partcnt)*pc
startpc = pc*math.ceil(polysides/partcnt)
endpc = startpc + sidecnt
for pn in range(startpc, endpc):
# First half
if(pn == startpc):
ppt0 = inkex.paths.Move(pieces[pn][0].x,pieces[pn][0].y)
dwrap +='M '+str(ppt0.x)+','+str(ppt0.y)
# We're also creating wpath for later use in creating the model
wpath.path.append(ppt0)
ppt1 = inkex.paths.Line(pieces[pn][1].x,pieces[pn][1].y)
dwrap +=' L '+str(ppt1.x)+','+str(ppt1.y)
wpath.path.append(ppt1)
if pn < endpc - 1:
# Put scorelines across the collar
ppt2 = inkex.paths.Line(pieces[pn][2].x,pieces[pn][2].y)
spaths = self.makescore(ppt1, ppt2,dashlength)
dscores.append(spaths)
for pn in range(endpc-1, startpc-1, -1):
# Second half
if(pn == (endpc-1)):
ppt2 = inkex.paths.Line(pieces[pn][2].x,pieces[pn][2].y)
dwrap +=' L '+str(pieces[pn][2].x)+','+str(pieces[pn][2].y)
wpath.path.append(inkex.paths.Line(pieces[pn][2].x,pieces[pn][2].y))
ppt3 = inkex.paths.Line(pieces[pn][3].x,pieces[pn][3].y)
dwrap +=' L '+str(ppt3.x)+','+str(ppt3.y)
wpath.path.append(inkex.paths.Line(pieces[pn][3].x,pieces[pn][3].y))
dwrap +=' Z' # Close off the wrapper's path
wpath.path.append(ppt0)
if math.isclose(dashlength, 0.0):
# lump together all the score lines
dscore = ''
for dndx in range(len(dscores)):
if dndx == 0:
dscore = dscores[dndx][1:]
else:
dscore += dscores[dndx]
group = inkex.elements._groups.Group()
group.label = 'group'+str(pc)+'ws'
if self.options.generate_decorative_wrapper is True:
self.drawline(dwrap,'wrapper'+str(pc),group,sstr="fill:#ffdddd;stroke:{};stroke-width:0.25".format(self.options.color_solid)) # Output the wrapper
self.drawline(dscore,'score'+str(pc)+'w',group,sstr="fill:#ffdddd;stroke:{};stroke-width:0.25".format(self.options.color_dash)) # Output the scorelines separately
layer.append(group)
else:
# lump together all the score lines with the model
for dndx in dscores:
dwrap = dwrap + dndx
self.drawline(dwrap,'wrapper'+str(pc),layer,sstr="fill:#ffdddd;stroke:{};stroke-width:0.25".format(self.options.color_solid)) # Output the wrapper
wpaths.append(copy.deepcopy(wpath))
wpath.path.clear()
done = 1
else:
# Create the model
for pc in range(partcnt):
dprop = ''
dscores.clear()
sidecnt = math.ceil(polysides/partcnt)
if pc == partcnt - 1:
sidecnt = polysides - math.ceil(polysides/partcnt)*pc
startpc = pc*math.ceil(polysides/partcnt)
endpc = startpc + sidecnt
for pn in range(startpc, endpc):
# First half
if pn == startpc:
dprop = 'M '+str(pieces[pn][0].x)+','+str(pieces[pn][0].y)
cpt1 = inkex.paths.Move(pieces[pn][0].x, pieces[pn][0].y)
cpt2 = inkex.paths.Move(pieces[pn][1].x, pieces[pn][1].y)
tabpt1, tabpt2 = self.makeTab(wpaths[pc], cpt1, cpt2, tab_height, tab_angle)
dprop +=' L '+str(tabpt1.x)+','+str(tabpt1.y)
dprop +=' L '+str(tabpt2.x)+','+str(tabpt2.y)
dprop += ' L '+str(pieces[pn][1].x)+','+str(pieces[pn][1].y)
# As long as we're here, create a scoreline along the tab...
spaths = self.makescore(pieces[pn][0], pieces[pn][1],dashlength)
dscores.append(spaths)
# ...and across the collar
spaths = self.makescore(pieces[pn][1], pieces[pn][2],dashlength)
dscores.append(spaths)
for pn in range(endpc-1, startpc-1, -1):
# Second half
if(pn == (endpc-1)):
# Since we're starting on the last piece, put a tab on the end of it, too
cpt1 = inkex.paths.Move(pieces[pn][1].x, pieces[pn][1].y)
cpt2 = inkex.paths.Move(pieces[pn][2].x, pieces[pn][2].y)
tabpt1, tabpt2 = self.makeTab(wpaths[pc], cpt1, cpt2, tab_height, tab_angle)
dprop +=' L '+str(tabpt1.x)+','+str(tabpt1.y)
dprop +=' L '+str(tabpt2.x)+','+str(tabpt2.y)
# Create a scoreline along the tab
#spaths = self.makescore(pieces[pn][1], pieces[pn][2],dashlength)
#dscores.append(spaths)
dprop +=' L '+str(pieces[pn][2].x)+','+str(pieces[pn][2].y)
cpt1 = inkex.paths.Move(pieces[pn][2].x, pieces[pn][2].y)
cpt2 = inkex.paths.Move(pieces[pn][3].x, pieces[pn][3].y)
tabpt1, tabpt2 = self.makeTab(wpaths[pc], cpt1, cpt2, polysmalltabht, tab_angle)
dprop +=' L '+str(tabpt1.x)+','+str(tabpt1.y)
dprop +=' L '+str(tabpt2.x)+','+str(tabpt2.y)
dprop += ' L '+str(pieces[pn][3].x)+','+str(pieces[pn][3].y)
# Create a scoreline along the tab
spaths = self.makescore(pieces[pn][2], pieces[pn][3],dashlength)
dscores.append(spaths)
dprop += ' Z' # Close off the model's path
# lump together all the score lines
dscore = ''
for dndx in range(len(dscores)):
if dndx == 0:
dscore = dscores[dndx][1:]
else:
dscore += dscores[dndx]
group = inkex.elements._groups.Group()
group.label = 'group'+str(pc)+'ms'
self.drawline(dprop,'model'+str(pc),group,sstr='stroke:{};stroke-width:0.25;fill:#eeeeee'.format(self.options.color_solid)) # Output the model
#self.drawline(dprop,'model'+str(pc),group,sstr=None) # Output the model
#self.drawline(dscore,'score'+str(pc)+'m',group,sstr=None) # Output the scorelines separately
if dscore != '':
dscore_style = 'stroke:{};stroke-width:0.25;fill:#eeeeee'.format(self.options.color_dash)
if self.options.cosmetic_dash_style is True:
dscore_style += ';stroke-dasharray:{}'.format(3, 3)
self.drawline(dscore,'score'+str(pc),group,dscore_style) # Output the scorelines separately
layer.append(group)
# At this point, we can generate the top and bottom polygons
# r = sidelength/(2*sin(PI/numpoly))
self.drawline(self.makepoly(w1, polysides),'biglid',layer,sstr=None) # Output the bigger polygon
sp = self.makepoly(w2, polysides)
self.drawline(sp,'smalllid',layer,sstr=None) # Output the smaller polygon
done = 2
if __name__ == '__main__':
Collar().run()