This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

451 lines
17 KiB
Python

import pytest
import networkx as nx
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
from networkx.testing.utils import assert_graphs_equal
#numpy = pytest.importorskip("numpy")
class TestConvertNumpy(object):
@classmethod
def setup_class(cls):
global np
global np_assert_equal
try:
import numpy as np
np_assert_equal = np.testing.assert_equal
except ImportError:
pytest.skip('Numpy not available', allow_module_level=True)
def setup_method(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph)
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
def test_exceptions(self):
G = np.array("a")
pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G)
def create_weighted(self, G):
g = cycle_graph(4)
G.add_nodes_from(g)
G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
return G
def assert_equal(self, G1, G2):
assert sorted(G1.nodes()) == sorted(G2.nodes())
assert sorted(G1.edges()) == sorted(G2.edges())
def identity_conversion(self, G, A, create_using):
assert(A.sum() > 0)
GG = nx.from_numpy_matrix(A, create_using=create_using)
self.assert_equal(G, GG)
GW = nx.to_networkx_graph(A, create_using=create_using)
self.assert_equal(G, GW)
GI = nx.empty_graph(0, create_using).__class__(A)
self.assert_equal(G, GI)
def test_shape(self):
"Conversion from non-square array."
A = np.array([[1, 2, 3], [4, 5, 6]])
pytest.raises(nx.NetworkXError, nx.from_numpy_matrix, A)
def test_identity_graph_matrix(self):
"Conversion from graph to matrix to graph."
A = nx.to_numpy_matrix(self.G1)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_graph_array(self):
"Conversion from graph to array to graph."
A = nx.to_numpy_matrix(self.G1)
A = np.asarray(A)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_digraph_matrix(self):
"""Conversion from digraph to matrix to digraph."""
A = nx.to_numpy_matrix(self.G2)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_digraph_array(self):
"""Conversion from digraph to array to digraph."""
A = nx.to_numpy_matrix(self.G2)
A = np.asarray(A)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_weighted_graph_matrix(self):
"""Conversion from weighted graph to matrix to weighted graph."""
A = nx.to_numpy_matrix(self.G3)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_graph_array(self):
"""Conversion from weighted graph to array to weighted graph."""
A = nx.to_numpy_matrix(self.G3)
A = np.asarray(A)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_digraph_matrix(self):
"""Conversion from weighted digraph to matrix to weighted digraph."""
A = nx.to_numpy_matrix(self.G4)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_identity_weighted_digraph_array(self):
"""Conversion from weighted digraph to array to weighted digraph."""
A = nx.to_numpy_matrix(self.G4)
A = np.asarray(A)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_nodelist(self):
"""Conversion from graph to matrix to graph with nodelist."""
P4 = path_graph(4)
P3 = path_graph(3)
nodelist = list(P3)
A = nx.to_numpy_matrix(P4, nodelist=nodelist)
GA = nx.Graph(A)
self.assert_equal(GA, P3)
# Make nodelist ambiguous by containing duplicates.
nodelist += [nodelist[0]]
pytest.raises(nx.NetworkXError, nx.to_numpy_matrix, P3, nodelist=nodelist)
def test_weight_keyword(self):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3)) for n in range(3))
P4 = path_graph(4)
A = nx.to_numpy_matrix(P4)
np_assert_equal(A, nx.to_numpy_matrix(WP4, weight=None))
np_assert_equal(0.5 * A, nx.to_numpy_matrix(WP4))
np_assert_equal(0.3 * A, nx.to_numpy_matrix(WP4, weight='other'))
def test_from_numpy_matrix_type(self):
A = np.matrix([[1]])
G = nx.from_numpy_matrix(A)
assert type(G[0][0]['weight']) == int
A = np.matrix([[1]]).astype(np.float)
G = nx.from_numpy_matrix(A)
assert type(G[0][0]['weight']) == float
A = np.matrix([[1]]).astype(np.str)
G = nx.from_numpy_matrix(A)
assert type(G[0][0]['weight']) == str
A = np.matrix([[1]]).astype(np.bool)
G = nx.from_numpy_matrix(A)
assert type(G[0][0]['weight']) == bool
A = np.matrix([[1]]).astype(np.complex)
G = nx.from_numpy_matrix(A)
assert type(G[0][0]['weight']) == complex
A = np.matrix([[1]]).astype(np.object)
pytest.raises(TypeError, nx.from_numpy_matrix, A)
G = nx.cycle_graph(3)
A = nx.adj_matrix(G).todense()
H = nx.from_numpy_matrix(A)
assert all(type(m) == int and type(n) == int for m, n in H.edges())
H = nx.from_numpy_array(A)
assert all(type(m) == int and type(n) == int for m, n in H.edges())
def test_from_numpy_matrix_dtype(self):
dt = [('weight', float), ('cost', int)]
A = np.matrix([[(1.0, 2)]], dtype=dt)
G = nx.from_numpy_matrix(A)
assert type(G[0][0]['weight']) == float
assert type(G[0][0]['cost']) == int
assert G[0][0]['cost'] == 2
assert G[0][0]['weight'] == 1.0
def test_to_numpy_recarray(self):
G = nx.Graph()
G.add_edge(1, 2, weight=7.0, cost=5)
A = nx.to_numpy_recarray(G, dtype=[('weight', float), ('cost', int)])
assert sorted(A.dtype.names) == ['cost', 'weight']
assert A.weight[0, 1] == 7.0
assert A.weight[0, 0] == 0.0
assert A.cost[0, 1] == 5
assert A.cost[0, 0] == 0
def test_numpy_multigraph(self):
G = nx.MultiGraph()
G.add_edge(1, 2, weight=7)
G.add_edge(1, 2, weight=70)
A = nx.to_numpy_matrix(G)
assert A[1, 0] == 77
A = nx.to_numpy_matrix(G, multigraph_weight=min)
assert A[1, 0] == 7
A = nx.to_numpy_matrix(G, multigraph_weight=max)
assert A[1, 0] == 70
def test_from_numpy_matrix_parallel_edges(self):
"""Tests that the :func:`networkx.from_numpy_matrix` function
interprets integer weights as the number of parallel edges when
creating a multigraph.
"""
A = np.matrix([[1, 1], [1, 2]])
# First, with a simple graph, each integer entry in the adjacency
# matrix is interpreted as the weight of a single edge in the graph.
expected = nx.DiGraph()
edges = [(0, 0), (0, 1), (1, 0)]
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
expected.add_edge(1, 1, weight=2)
actual = nx.from_numpy_matrix(A, parallel_edges=True,
create_using=nx.DiGraph)
assert_graphs_equal(actual, expected)
actual = nx.from_numpy_matrix(A, parallel_edges=False,
create_using=nx.DiGraph)
assert_graphs_equal(actual, expected)
# Now each integer entry in the adjacency matrix is interpreted as the
# number of parallel edges in the graph if the appropriate keyword
# argument is specified.
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
expected = nx.MultiDiGraph()
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
actual = nx.from_numpy_matrix(A, parallel_edges=True,
create_using=nx.MultiDiGraph)
assert_graphs_equal(actual, expected)
expected = nx.MultiDiGraph()
expected.add_edges_from(set(edges), weight=1)
# The sole self-loop (edge 0) on vertex 1 should have weight 2.
expected[1][1][0]['weight'] = 2
actual = nx.from_numpy_matrix(A, parallel_edges=False,
create_using=nx.MultiDiGraph)
assert_graphs_equal(actual, expected)
def test_symmetric(self):
"""Tests that a symmetric matrix has edges added only once to an
undirected multigraph when using :func:`networkx.from_numpy_matrix`.
"""
A = np.matrix([[0, 1], [1, 0]])
G = nx.from_numpy_matrix(A, create_using=nx.MultiGraph)
expected = nx.MultiGraph()
expected.add_edge(0, 1, weight=1)
assert_graphs_equal(G, expected)
def test_dtype_int_graph(self):
"""Test that setting dtype int actually gives an integer matrix.
For more information, see GitHub pull request #1363.
"""
G = nx.complete_graph(3)
A = nx.to_numpy_matrix(G, dtype=int)
assert A.dtype == int
def test_dtype_int_multigraph(self):
"""Test that setting dtype int actually gives an integer matrix.
For more information, see GitHub pull request #1363.
"""
G = nx.MultiGraph(nx.complete_graph(3))
A = nx.to_numpy_matrix(G, dtype=int)
assert A.dtype == int
class TestConvertNumpyArray(object):
@classmethod
def setup_class(cls):
global np
global np_assert_equal
np = pytest.importorskip('numpy')
np_assert_equal = np.testing.assert_equal
def setup_method(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph)
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
def create_weighted(self, G):
g = cycle_graph(4)
G.add_nodes_from(g)
G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
return G
def assert_equal(self, G1, G2):
assert sorted(G1.nodes()) == sorted(G2.nodes())
assert sorted(G1.edges()) == sorted(G2.edges())
def identity_conversion(self, G, A, create_using):
assert(A.sum() > 0)
GG = nx.from_numpy_array(A, create_using=create_using)
self.assert_equal(G, GG)
GW = nx.to_networkx_graph(A, create_using=create_using)
self.assert_equal(G, GW)
GI = nx.empty_graph(0, create_using).__class__(A)
self.assert_equal(G, GI)
def test_shape(self):
"Conversion from non-square array."
A = np.array([[1, 2, 3], [4, 5, 6]])
pytest.raises(nx.NetworkXError, nx.from_numpy_array, A)
def test_identity_graph_array(self):
"Conversion from graph to array to graph."
A = nx.to_numpy_array(self.G1)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_digraph_array(self):
"""Conversion from digraph to array to digraph."""
A = nx.to_numpy_array(self.G2)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_weighted_graph_array(self):
"""Conversion from weighted graph to array to weighted graph."""
A = nx.to_numpy_array(self.G3)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_digraph_array(self):
"""Conversion from weighted digraph to array to weighted digraph."""
A = nx.to_numpy_array(self.G4)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_nodelist(self):
"""Conversion from graph to array to graph with nodelist."""
P4 = path_graph(4)
P3 = path_graph(3)
nodelist = list(P3)
A = nx.to_numpy_array(P4, nodelist=nodelist)
GA = nx.Graph(A)
self.assert_equal(GA, P3)
# Make nodelist ambiguous by containing duplicates.
nodelist += [nodelist[0]]
pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
def test_weight_keyword(self):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3)) for n in range(3))
P4 = path_graph(4)
A = nx.to_numpy_array(P4)
np_assert_equal(A, nx.to_numpy_array(WP4, weight=None))
np_assert_equal(0.5 * A, nx.to_numpy_array(WP4))
np_assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight='other'))
def test_from_numpy_array_type(self):
A = np.array([[1]])
G = nx.from_numpy_array(A)
assert type(G[0][0]['weight']) == int
A = np.array([[1]]).astype(np.float)
G = nx.from_numpy_array(A)
assert type(G[0][0]['weight']) == float
A = np.array([[1]]).astype(np.str)
G = nx.from_numpy_array(A)
assert type(G[0][0]['weight']) == str
A = np.array([[1]]).astype(np.bool)
G = nx.from_numpy_array(A)
assert type(G[0][0]['weight']) == bool
A = np.array([[1]]).astype(np.complex)
G = nx.from_numpy_array(A)
assert type(G[0][0]['weight']) == complex
A = np.array([[1]]).astype(np.object)
pytest.raises(TypeError, nx.from_numpy_array, A)
def test_from_numpy_array_dtype(self):
dt = [('weight', float), ('cost', int)]
A = np.array([[(1.0, 2)]], dtype=dt)
G = nx.from_numpy_array(A)
assert type(G[0][0]['weight']) == float
assert type(G[0][0]['cost']) == int
assert G[0][0]['cost'] == 2
assert G[0][0]['weight'] == 1.0
def test_to_numpy_recarray(self):
G = nx.Graph()
G.add_edge(1, 2, weight=7.0, cost=5)
A = nx.to_numpy_recarray(G, dtype=[('weight', float), ('cost', int)])
assert sorted(A.dtype.names) == ['cost', 'weight']
assert A.weight[0, 1] == 7.0
assert A.weight[0, 0] == 0.0
assert A.cost[0, 1] == 5
assert A.cost[0, 0] == 0
def test_numpy_multigraph(self):
G = nx.MultiGraph()
G.add_edge(1, 2, weight=7)
G.add_edge(1, 2, weight=70)
A = nx.to_numpy_array(G)
assert A[1, 0] == 77
A = nx.to_numpy_array(G, multigraph_weight=min)
assert A[1, 0] == 7
A = nx.to_numpy_array(G, multigraph_weight=max)
assert A[1, 0] == 70
def test_from_numpy_array_parallel_edges(self):
"""Tests that the :func:`networkx.from_numpy_array` function
interprets integer weights as the number of parallel edges when
creating a multigraph.
"""
A = np.array([[1, 1], [1, 2]])
# First, with a simple graph, each integer entry in the adjacency
# matrix is interpreted as the weight of a single edge in the graph.
expected = nx.DiGraph()
edges = [(0, 0), (0, 1), (1, 0)]
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
expected.add_edge(1, 1, weight=2)
actual = nx.from_numpy_array(A, parallel_edges=True,
create_using=nx.DiGraph)
assert_graphs_equal(actual, expected)
actual = nx.from_numpy_array(A, parallel_edges=False,
create_using=nx.DiGraph)
assert_graphs_equal(actual, expected)
# Now each integer entry in the adjacency matrix is interpreted as the
# number of parallel edges in the graph if the appropriate keyword
# argument is specified.
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
expected = nx.MultiDiGraph()
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
actual = nx.from_numpy_array(A, parallel_edges=True,
create_using=nx.MultiDiGraph)
assert_graphs_equal(actual, expected)
expected = nx.MultiDiGraph()
expected.add_edges_from(set(edges), weight=1)
# The sole self-loop (edge 0) on vertex 1 should have weight 2.
expected[1][1][0]['weight'] = 2
actual = nx.from_numpy_array(A, parallel_edges=False,
create_using=nx.MultiDiGraph)
assert_graphs_equal(actual, expected)
def test_symmetric(self):
"""Tests that a symmetric array has edges added only once to an
undirected multigraph when using :func:`networkx.from_numpy_array`.
"""
A = np.array([[0, 1], [1, 0]])
G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
expected = nx.MultiGraph()
expected.add_edge(0, 1, weight=1)
assert_graphs_equal(G, expected)
def test_dtype_int_graph(self):
"""Test that setting dtype int actually gives an integer array.
For more information, see GitHub pull request #1363.
"""
G = nx.complete_graph(3)
A = nx.to_numpy_array(G, dtype=int)
assert A.dtype == int
def test_dtype_int_multigraph(self):
"""Test that setting dtype int actually gives an integer array.
For more information, see GitHub pull request #1363.
"""
G = nx.MultiGraph(nx.complete_graph(3))
A = nx.to_numpy_array(G, dtype=int)
assert A.dtype == int