This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.

87 lines
3.6 KiB
Python

#! /usr/bin/env python3
from math import sin, cos, sqrt, asin, pi, ceil
import inkex
from Path import Path
from Pattern import Pattern
from Kresling import Kresling
class Kresling_Full(Kresling):
def __init__(self):
Kresling.__init__(self) # Must be called in order to parse common options
self.add_argument('--measure_value', type=float, default=10.0, help="Length")
self.add_argument('--measure_type', default=60, help="Type of length")
self.add_argument('--parameter_type', default=60, help="Type of parameter")
self.add_argument('--radial_ratio', type=float, default=0.5, help="Radial ratio")
self.add_argument('--angle_ratio', type=float, default=0.5, help="Anle ratio")
self.add_argument('--lambdatheta', type=float, default=45, help="lambdatheta")
def generate_path_tree(self):
""" Convert radial to angular ratio, then call regular Kresling constructor
"""
n = self.options.sides
theta = pi*(n-2)/(2*n)
# define ratio parameter
parameter = self.options.parameter_type
if parameter == 'radial_ratio':
radial_ratio = self.options.radial_ratio
max_radial_ratio = sin((pi/4)*(1. - 2./n))
if radial_ratio > max_radial_ratio:
inkex.errormsg(_("For polygon of {} sides, the maximal radial ratio is = {}".format(n, max_radial_ratio)))
radial_ratio = max_radial_ratio
self.options.angle_ratio = 1 - 2*n*asin(radial_ratio)/((n-2)*pi)
elif parameter == 'lambdatheta':
lambdatheta = self.options.lambdatheta
angle_min = 45. * (1 - 2. / n)
angle_max = 2 * angle_min
if lambdatheta < angle_min:
inkex.errormsg(_(
"For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
n, angle_min, angle_max, angle_min)))
lambdatheta = angle_min
elif lambdatheta > angle_max:
inkex.errormsg(_(
"For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
n, angle_min, angle_max, angle_max)))
lambdatheta = angle_max
self.options.angle_ratio = lambdatheta * n / (90. * (n - 2.))
# define some length
mtype = self.options.measure_type
mvalue = self.options.measure_value
angle_ratio = self.options.angle_ratio
if mtype == 'a':
radius = 0.5*mvalue / (sin(pi/n))
if mtype == 'b':
A = cos(theta*(1-angle_ratio))
B = sin(pi/n)
C = cos(theta*angle_ratio)
radius = 0.5*mvalue / sqrt(A**2 + B**2 - 2*A*B*C)
elif mtype == 'l':
radius = 0.5*mvalue/cos(theta*(1-angle_ratio))
elif mtype == 'radius_external':
radius = mvalue
elif mtype == 'radius_internal':
radius = mvalue/(sin(theta*(1-angle_ratio)))
elif mtype == 'diameter_external':
radius = 0.5*mvalue
elif mtype == 'diameter_internal':
radius = 0.5*mvalue/sin(theta*(1-angle_ratio))
# inkex.errormsg(_("Value = {}, Mode = {}, Radius = {}".format(mvalue, mtype, radius)))
if self.options.pattern == 'mirrowed':
self.options.mirror_cells = True
else:
self.options.mirror_cells = False
self.options.radius = radius
Kresling.generate_path_tree(self)
if __name__ == '__main__':
Kresling_Full().run()