175 lines
5.4 KiB
Python
175 lines
5.4 KiB
Python
# -*- coding: utf-8 -*-
|
||
#
|
||
# kernighan_lin.py - Kernighan–Lin bipartition algorithm
|
||
#
|
||
# Copyright 2011 Ben Edwards <bedwards@cs.unm.edu>.
|
||
# Copyright 2011 Aric Hagberg <hagberg@lanl.gov>.
|
||
# Copyright 2015 NetworkX developers.
|
||
#
|
||
# This file is part of NetworkX.
|
||
#
|
||
# NetworkX is distributed under a BSD license; see LICENSE.txt for more
|
||
# information.
|
||
"""Functions for computing the Kernighan–Lin bipartition algorithm."""
|
||
|
||
from collections import defaultdict
|
||
from itertools import islice
|
||
from operator import itemgetter
|
||
|
||
import networkx as nx
|
||
from networkx.utils import not_implemented_for, py_random_state
|
||
from networkx.algorithms.community.community_utils import is_partition
|
||
|
||
__all__ = ['kernighan_lin_bisection']
|
||
|
||
|
||
def _compute_delta(G, A, B, weight):
|
||
# helper to compute initial swap deltas for a pass
|
||
delta = defaultdict(float)
|
||
for u, v, d in G.edges(data=True):
|
||
w = d.get(weight, 1)
|
||
if u in A:
|
||
if v in A:
|
||
delta[u] -= w
|
||
delta[v] -= w
|
||
elif v in B:
|
||
delta[u] += w
|
||
delta[v] += w
|
||
elif u in B:
|
||
if v in A:
|
||
delta[u] += w
|
||
delta[v] += w
|
||
elif v in B:
|
||
delta[u] -= w
|
||
delta[v] -= w
|
||
return delta
|
||
|
||
|
||
def _update_delta(delta, G, A, B, u, v, weight):
|
||
# helper to update swap deltas during single pass
|
||
for _, nbr, d in G.edges(u, data=True):
|
||
w = d.get(weight, 1)
|
||
if nbr in A:
|
||
delta[nbr] += 2 * w
|
||
if nbr in B:
|
||
delta[nbr] -= 2 * w
|
||
for _, nbr, d in G.edges(v, data=True):
|
||
w = d.get(weight, 1)
|
||
if nbr in A:
|
||
delta[nbr] -= 2 * w
|
||
if nbr in B:
|
||
delta[nbr] += 2 * w
|
||
return delta
|
||
|
||
|
||
def _kernighan_lin_pass(G, A, B, weight):
|
||
# do a single iteration of Kernighan–Lin algorithm
|
||
# returns list of (g_i,u_i,v_i) for i node pairs u_i,v_i
|
||
multigraph = G.is_multigraph()
|
||
delta = _compute_delta(G, A, B, weight)
|
||
swapped = set()
|
||
gains = []
|
||
while len(swapped) < len(G):
|
||
gain = []
|
||
for u in A - swapped:
|
||
for v in B - swapped:
|
||
try:
|
||
if multigraph:
|
||
w = sum(d.get(weight, 1) for d in G[u][v].values())
|
||
else:
|
||
w = G[u][v].get(weight, 1)
|
||
except KeyError:
|
||
w = 0
|
||
gain.append((delta[u] + delta[v] - 2 * w, u, v))
|
||
if len(gain) == 0:
|
||
break
|
||
maxg, u, v = max(gain, key=itemgetter(0))
|
||
swapped |= {u, v}
|
||
gains.append((maxg, u, v))
|
||
delta = _update_delta(delta, G, A - swapped, B - swapped, u, v, weight)
|
||
return gains
|
||
|
||
|
||
@py_random_state(4)
|
||
@not_implemented_for('directed')
|
||
def kernighan_lin_bisection(G, partition=None, max_iter=10, weight='weight',
|
||
seed=None):
|
||
"""Partition a graph into two blocks using the Kernighan–Lin
|
||
algorithm.
|
||
|
||
This algorithm paritions a network into two sets by iteratively
|
||
swapping pairs of nodes to reduce the edge cut between the two sets.
|
||
|
||
Parameters
|
||
----------
|
||
G : graph
|
||
|
||
partition : tuple
|
||
Pair of iterables containing an initial partition. If not
|
||
specified, a random balanced partition is used.
|
||
|
||
max_iter : int
|
||
Maximum number of times to attempt swaps to find an
|
||
improvemement before giving up.
|
||
|
||
weight : key
|
||
Edge data key to use as weight. If None, the weights are all
|
||
set to one.
|
||
|
||
seed : integer, random_state, or None (default)
|
||
Indicator of random number generation state.
|
||
See :ref:`Randomness<randomness>`.
|
||
Only used if partition is None
|
||
|
||
Returns
|
||
-------
|
||
partition : tuple
|
||
A pair of sets of nodes representing the bipartition.
|
||
|
||
Raises
|
||
-------
|
||
NetworkXError
|
||
If partition is not a valid partition of the nodes of the graph.
|
||
|
||
References
|
||
----------
|
||
.. [1] Kernighan, B. W.; Lin, Shen (1970).
|
||
"An efficient heuristic procedure for partitioning graphs."
|
||
*Bell Systems Technical Journal* 49: 291--307.
|
||
Oxford University Press 2011.
|
||
|
||
"""
|
||
# If no partition is provided, split the nodes randomly into a
|
||
# balanced partition.
|
||
if partition is None:
|
||
nodes = list(G)
|
||
seed.shuffle(nodes)
|
||
h = len(nodes) // 2
|
||
partition = (nodes[:h], nodes[h:])
|
||
# Make a copy of the partition as a pair of sets.
|
||
try:
|
||
A, B = set(partition[0]), set(partition[1])
|
||
except:
|
||
raise ValueError('partition must be two sets')
|
||
if not is_partition(G, (A, B)):
|
||
raise nx.NetworkXError('partition invalid')
|
||
for i in range(max_iter):
|
||
# `gains` is a list of triples of the form (g, u, v) for each
|
||
# node pair (u, v), where `g` is the gain of that node pair.
|
||
gains = _kernighan_lin_pass(G, A, B, weight)
|
||
csum = list(nx.utils.accumulate(g for g, u, v in gains))
|
||
max_cgain = max(csum)
|
||
if max_cgain <= 0:
|
||
break
|
||
# Get the node pairs up to the index of the maximum cumulative
|
||
# gain, and collect each `u` into `anodes` and each `v` into
|
||
# `bnodes`, for each pair `(u, v)`.
|
||
index = csum.index(max_cgain)
|
||
nodesets = islice(zip(*gains[:index + 1]), 1, 3)
|
||
anodes, bnodes = (set(s) for s in nodesets)
|
||
A |= bnodes
|
||
A -= anodes
|
||
B |= anodes
|
||
B -= bnodes
|
||
return A, B
|