This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/networkx/generators/tests/test_small.py
2020-07-30 01:16:18 +02:00

189 lines
6.4 KiB
Python

#!/usr/bin/env python
import pytest
import networkx as nx
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
is_isomorphic = graph_could_be_isomorphic
"""Generators - Small
=====================
Some small graphs
"""
null = nx.null_graph()
class TestGeneratorsSmall():
def test_make_small_graph(self):
d = ["adjacencylist", "Bull Graph", 5, [[2, 3], [1, 3, 4], [1, 2, 5], [2], [3]]]
G = nx.make_small_graph(d)
assert is_isomorphic(G, nx.bull_graph())
def test__LCF_graph(self):
# If n<=0, then return the null_graph
G = nx.LCF_graph(-10, [1, 2], 100)
assert is_isomorphic(G, null)
G = nx.LCF_graph(0, [1, 2], 3)
assert is_isomorphic(G, null)
G = nx.LCF_graph(0, [1, 2], 10)
assert is_isomorphic(G, null)
# Test that LCF(n,[],0) == cycle_graph(n)
for a, b, c in [(5, [], 0), (10, [], 0), (5, [], 1), (10, [], 10)]:
G = nx.LCF_graph(a, b, c)
assert is_isomorphic(G, nx.cycle_graph(a))
# Generate the utility graph K_{3,3}
G = nx.LCF_graph(6, [3, -3], 3)
utility_graph = nx.complete_bipartite_graph(3, 3)
assert is_isomorphic(G, utility_graph)
def test_properties_named_small_graphs(self):
G = nx.bull_graph()
assert G.number_of_nodes() == 5
assert G.number_of_edges() == 5
assert sorted(d for n, d in G.degree()) == [1, 1, 2, 3, 3]
assert nx.diameter(G) == 3
assert nx.radius(G) == 2
G = nx.chvatal_graph()
assert G.number_of_nodes() == 12
assert G.number_of_edges() == 24
assert list(d for n, d in G.degree()) == 12 * [4]
assert nx.diameter(G) == 2
assert nx.radius(G) == 2
G = nx.cubical_graph()
assert G.number_of_nodes() == 8
assert G.number_of_edges() == 12
assert list(d for n, d in G.degree()) == 8 * [3]
assert nx.diameter(G) == 3
assert nx.radius(G) == 3
G = nx.desargues_graph()
assert G.number_of_nodes() == 20
assert G.number_of_edges() == 30
assert list(d for n, d in G.degree()) == 20 * [3]
G = nx.diamond_graph()
assert G.number_of_nodes() == 4
assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3]
assert nx.diameter(G) == 2
assert nx.radius(G) == 1
G = nx.dodecahedral_graph()
assert G.number_of_nodes() == 20
assert G.number_of_edges() == 30
assert list(d for n, d in G.degree()) == 20 * [3]
assert nx.diameter(G) == 5
assert nx.radius(G) == 5
G = nx.frucht_graph()
assert G.number_of_nodes() == 12
assert G.number_of_edges() == 18
assert list(d for n, d in G.degree()) == 12 * [3]
assert nx.diameter(G) == 4
assert nx.radius(G) == 3
G = nx.heawood_graph()
assert G.number_of_nodes() == 14
assert G.number_of_edges() == 21
assert list(d for n, d in G.degree()) == 14 * [3]
assert nx.diameter(G) == 3
assert nx.radius(G) == 3
G = nx.hoffman_singleton_graph()
assert G.number_of_nodes() == 50
assert G.number_of_edges() == 175
assert list(d for n, d in G.degree()) == 50 * [7]
assert nx.diameter(G) == 2
assert nx.radius(G) == 2
G = nx.house_graph()
assert G.number_of_nodes() == 5
assert G.number_of_edges() == 6
assert sorted(d for n, d in G.degree()) == [2, 2, 2, 3, 3]
assert nx.diameter(G) == 2
assert nx.radius(G) == 2
G = nx.house_x_graph()
assert G.number_of_nodes() == 5
assert G.number_of_edges() == 8
assert sorted(d for n, d in G.degree()) == [2, 3, 3, 4, 4]
assert nx.diameter(G) == 2
assert nx.radius(G) == 1
G = nx.icosahedral_graph()
assert G.number_of_nodes() == 12
assert G.number_of_edges() == 30
assert (list(d for n, d in G.degree()) ==
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5])
assert nx.diameter(G) == 3
assert nx.radius(G) == 3
G = nx.krackhardt_kite_graph()
assert G.number_of_nodes() == 10
assert G.number_of_edges() == 18
assert (sorted(d for n, d in G.degree()) ==
[1, 2, 3, 3, 3, 4, 4, 5, 5, 6])
G = nx.moebius_kantor_graph()
assert G.number_of_nodes() == 16
assert G.number_of_edges() == 24
assert list(d for n, d in G.degree()) == 16 * [3]
assert nx.diameter(G) == 4
G = nx.octahedral_graph()
assert G.number_of_nodes() == 6
assert G.number_of_edges() == 12
assert list(d for n, d in G.degree()) == 6 * [4]
assert nx.diameter(G) == 2
assert nx.radius(G) == 2
G = nx.pappus_graph()
assert G.number_of_nodes() == 18
assert G.number_of_edges() == 27
assert list(d for n, d in G.degree()) == 18 * [3]
assert nx.diameter(G) == 4
G = nx.petersen_graph()
assert G.number_of_nodes() == 10
assert G.number_of_edges() == 15
assert list(d for n, d in G.degree()) == 10 * [3]
assert nx.diameter(G) == 2
assert nx.radius(G) == 2
G = nx.sedgewick_maze_graph()
assert G.number_of_nodes() == 8
assert G.number_of_edges() == 10
assert sorted(d for n, d in G.degree()) == [1, 2, 2, 2, 3, 3, 3, 4]
G = nx.tetrahedral_graph()
assert G.number_of_nodes() == 4
assert G.number_of_edges() == 6
assert list(d for n, d in G.degree()) == [3, 3, 3, 3]
assert nx.diameter(G) == 1
assert nx.radius(G) == 1
G = nx.truncated_cube_graph()
assert G.number_of_nodes() == 24
assert G.number_of_edges() == 36
assert list(d for n, d in G.degree()) == 24 * [3]
G = nx.truncated_tetrahedron_graph()
assert G.number_of_nodes() == 12
assert G.number_of_edges() == 18
assert list(d for n, d in G.degree()) == 12 * [3]
G = nx.tutte_graph()
assert G.number_of_nodes() == 46
assert G.number_of_edges() == 69
assert list(d for n, d in G.degree()) == 46 * [3]
# Test create_using with directed or multigraphs on small graphs
pytest.raises(nx.NetworkXError, nx.tutte_graph,
create_using=nx.DiGraph)
MG = nx.tutte_graph(create_using=nx.MultiGraph)
assert sorted(MG.edges()) == sorted(G.edges())