This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/fablabchemnitz/papercraft/openjscad/node_modules/sylvester/lib/polygon.js

593 lines
20 KiB
JavaScript

'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Vertex = exports.Polygon = undefined;
var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }();
var _line = require('./line');
var _linkedlist = require('./linkedlist');
var _matrix = require('./matrix');
var _plane = require('./plane');
var _sylvester = require('./sylvester');
var _vector = require('./vector');
function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; }
function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
var Polygon = exports.Polygon = function () {
function Polygon() {
_classCallCheck(this, Polygon);
}
_createClass(Polygon, [{
key: 'v',
// Returns the vertex at the given position on the vertex list, numbered from 1.
value: function v(i) {
return this.vertices.at(i - 1).data;
}
// Returns the node in the vertices linked list that refers to the given vertex.
}, {
key: 'nodeFor',
value: function nodeFor(vertex) {
return this.vertices.withData(vertex);
}
// Returns a new polygon with the same vertices as the receiver. The vertices
// will not be duplicates, they refer to the same objects as the vertices in this
// polygon, but the linked list and nodes used to point to them are separate and
// can be manipulated independently of this one.
}, {
key: 'dup',
value: function dup() {
return Polygon.create(this.vertices, this.plane);
}
// Translates the polygon by the given vector and returns the polygon.
}, {
key: 'translate',
value: function translate(vector) {
var P = vector.elements || vector;
this.vertices.each(function (node) {
var E = node.data.elements;
node.data.setElements([E[0] + P[0], E[1] + P[1], E[2] + (P[2] || 0)]);
});
this.plane = this.plane.translate(vector);
this.updateTrianglePlanes(function (plane) {
return plane.translate(vector);
});
return this;
}
// Rotates the polygon about the given line and returns the polygon.
}, {
key: 'rotate',
value: function rotate(t, line) {
var R = _matrix.Matrix.Rotation(t, line.direction);
this.vertices.each(function (node) {
node.data.setElements(node.data.rotate(R, line).elements);
});
this.plane = this.plane.rotate(R, line);
this.updateTrianglePlanes(function (plane) {
return plane.rotate(R, line);
});
return this;
}
// Scales the polygon relative to the given point and returns the polygon.
}, {
key: 'scale',
value: function scale(k, point) {
var P = point.elements || point;
this.vertices.each(function (node) {
var E = node.data.elements;
node.data.setElements([P[0] + k * (E[0] - P[0]), P[1] + k * (E[1] - P[1]), (P[2] || 0) + k * (E[2] - (P[2] || 0))]);
});
var anchor = this.vertices.first.data;
this.plane.anchor.setElements(anchor);
this.updateTrianglePlanes(function (plane) {
return _plane.Plane.create(anchor, plane.normal);
});
return this;
}
// Updates the plane properties of all the cached triangles belonging to
// the polygon according to the given function. For example, suppose you
// just rotated the polygon, you should call:
//
// poly.updateTrianglePlanes(function(plane) { return plane.rotate(t, line); });
//
// This method is called automatically by Polygon.translate, Polygon.rotate
// and Polygon.scale transformation methods.
}, {
key: 'updateTrianglePlanes',
value: function updateTrianglePlanes(fn) {
var i = void 0;
if (this.cached.triangles !== null) {
i = this.cached.triangles.length;
while (i--) {
this.cached.triangles[i].plane = fn(this.cached.triangles[i].plane);
}
}
if (this.cached.surfaceIntegralElements !== null) {
i = this.cached.surfaceIntegralElements.length;
while (i--) {
this.cached.surfaceIntegralElements[i].plane = fn(this.cached.surfaceIntegralElements[i].plane);
}
}
}
// Returns true iff the polygon is a triangle
}, {
key: 'isTriangle',
value: function isTriangle() {
return this.vertices.length === 3;
}
// Returns a collection of triangles used for calculating area and center of mass.
// Some of the triangles will not lie inside the polygon - this collection is essentially
// a series of itervals in a surface integral, so some are 'negative'. If you want the
// polygon broken into constituent triangles, use toTriangles(). This method is used
// because it's much faster than toTriangles().
// The triangles generated share vertices with the original polygon, so they transform
// with the polygon. They are cached after first calculation and should remain in sync
// with changes to the parent polygon.
}, {
key: 'trianglesForSurfaceIntegral',
value: function trianglesForSurfaceIntegral() {
if (this.cached.surfaceIntegralElements !== null) {
return this.cached.surfaceIntegralElements;
}
var triangles = [];
var firstVertex = this.vertices.first.data;
var plane = this.plane;
this.vertices.each(function (node, i) {
if (i < 2) {
return;
}
var points = [firstVertex, node.prev.data, node.data];
// If the vertices lie on a straigh line, give the polygon's own plane. If the
// element has no area, it doesn't matter which way its normal faces.
triangles.push(Polygon.create(points, _plane.Plane.fromPoints(points) || plane));
});
return this.setCache('surfaceIntegralElements', triangles);
}
// Returns the area of the polygon. Requires that the polygon
// be converted to triangles, so use with caution.
}, {
key: 'area',
value: function area() {
if (this.isTriangle()) {
// Area is half the modulus of the cross product of two sides
var A = this.vertices.first;
var B = A.next;
var C = B.next;
A = A.data.elements;
B = B.data.elements;
C = C.data.elements;
return 0.5 * _vector.Vector.create([(A[1] - B[1]) * (C[2] - B[2]) - (A[2] - B[2]) * (C[1] - B[1]), (A[2] - B[2]) * (C[0] - B[0]) - (A[0] - B[0]) * (C[2] - B[2]), (A[0] - B[0]) * (C[1] - B[1]) - (A[1] - B[1]) * (C[0] - B[0])]).modulus();
}
var trigs = this.trianglesForSurfaceIntegral();
var area = 0;
for (var i = 0; i < trigs.length; i++) {
area += trigs[i].area() * trigs[i].plane.normal.dot(this.plane.normal);
}
return area;
}
// Returns the centroid of the polygon. Requires division into
// triangles - use with caution
}, {
key: 'centroid',
value: function centroid() {
if (this.isTriangle()) {
var A = this.v(1).elements;
var B = this.v(2).elements;
var C = this.v(3).elements;
return _vector.Vector.create([(A[0] + B[0] + C[0]) / 3, (A[1] + B[1] + C[1]) / 3, (A[2] + B[2] + C[2]) / 3]);
}
var V = _vector.Vector.Zero(3);
var trigs = this.trianglesForSurfaceIntegral();
var M = 0;
var i = trigs.length;
while (i--) {
var _A = trigs[i].area() * trigs[i].plane.normal.dot(this.plane.normal);
M += _A;
var P = V.elements;
var _C = trigs[i].centroid().elements;
V.setElements([P[0] + _C[0] * _A, P[1] + _C[1] * _A, P[2] + _C[2] * _A]);
}
return V.x(1 / M);
}
// Returns the polygon's projection on the given plane as another polygon
}, {
key: 'projectionOn',
value: function projectionOn(plane) {
var points = [];
this.vertices.each(function (node) {
points.push(plane.pointClosestTo(node.data));
});
return Polygon.create(points);
}
// Removes the given vertex from the polygon as long as it's not triangular.
}, {
key: 'removeVertex',
value: function removeVertex(vertex) {
if (this.isTriangle()) {
return;
}
var node = this.nodeFor(vertex);
if (node === null) {
return null;
}
this.clearCache();
// Previous and next entries in the main vertex list
var prev = node.prev;
var next = node.next;
var prevWasConvex = prev.data.isConvex(this);
var nextWasConvex = next.data.isConvex(this);
if (node.data.isConvex(this)) {
this.convexVertices.remove(this.convexVertices.withData(node.data));
} else {
this.reflexVertices.remove(this.reflexVertices.withData(node.data));
}
this.vertices.remove(node);
// Deal with previous vertex's change of class
if (prevWasConvex !== prev.data.isConvex(this)) {
if (prevWasConvex) {
this.convexVertices.remove(this.convexVertices.withData(prev.data));
this.reflexVertices.append(new _linkedlist.LinkedList.Node(prev.data));
} else {
this.reflexVertices.remove(this.reflexVertices.withData(prev.data));
this.convexVertices.append(new _linkedlist.LinkedList.Node(prev.data));
}
}
// Deal with next vertex's change of class
if (nextWasConvex !== next.data.isConvex(this)) {
if (nextWasConvex) {
this.convexVertices.remove(this.convexVertices.withData(next.data));
this.reflexVertices.append(new _linkedlist.LinkedList.Node(next.data));
} else {
this.reflexVertices.remove(this.reflexVertices.withData(next.data));
this.convexVertices.append(new _linkedlist.LinkedList.Node(next.data));
}
}
return this;
}
// Returns true iff the point is strictly inside the polygon
}, {
key: 'contains',
value: function contains(point) {
return this.containsByWindingNumber(point);
}
// Returns true iff the given point is strictly inside the polygon using the winding number method
}, {
key: 'containsByWindingNumber',
value: function containsByWindingNumber(point) {
var P = point.elements || point;
if (!this.plane.contains(P)) {
return false;
}
if (this.hasEdgeContaining(P)) {
return false;
}
var theta = 0;
var loops = 0;
var self = this;
this.vertices.each(function (node) {
var V = node.data.elements;
var W = node.next.data.elements;
var A = _vector.Vector.create([V[0] - P[0], V[1] - P[1], V[2] - (P[2] || 0)]);
var B = _vector.Vector.create([W[0] - P[0], W[1] - P[1], W[2] - (P[2] || 0)]);
var dt = A.angleFrom(B);
if (dt === null || dt === 0) {
return;
}
theta += (A.cross(B).isParallelTo(self.plane.normal) ? 1 : -1) * dt;
if (theta >= 2 * Math.PI - _sylvester.Sylvester.precision) {
loops++;
theta -= 2 * Math.PI;
}
if (theta <= -2 * Math.PI + _sylvester.Sylvester.precision) {
loops--;
theta += 2 * Math.PI;
}
});
return loops !== 0;
}
// Returns true if the given point lies on an edge of the polygon
// May cause problems with 'hole-joining' edges
}, {
key: 'hasEdgeContaining',
value: function hasEdgeContaining(point) {
var P = point.elements || point;
var success = false;
this.vertices.each(function (node) {
if (!success && _line.Line.Segment.create(node.data, node.next.data).contains(P)) {
success = true;
}
});
return success;
}
// Returns an array of 3-vertex polygons that the original has been split into
// Stores the first calculation for faster retrieval later on
}, {
key: 'toTriangles',
value: function toTriangles() {
if (this.cached.triangles !== null) {
return this.cached.triangles;
}
return this.setCache('triangles', this.triangulateByEarClipping());
}
// Implementation of ear clipping algorithm
// Found in 'Triangulation by ear clipping', by David Eberly
// at http://www.geometrictools.com
// This will not deal with overlapping sections - contruct your polygons sensibly
}, {
key: 'triangulateByEarClipping',
value: function triangulateByEarClipping() {
var _this = this;
var poly = this.dup();
var triangles = [];
while (!poly.isTriangle()) {
var success = false;
var trig = void 0;
var mainNode = void 0;
var _loop = function _loop() {
success = true;
// Ear tips must be convex vertices - let's pick one at random
var convexNode = poly.convexVertices.randomNode();
var mainNode = poly.vertices.withData(convexNode.data);
// For convex vertices, this order will always be anticlockwise
var trig = Polygon.create([mainNode.data, mainNode.next.data, mainNode.prev.data], _this.plane);
// Now test whether any reflex vertices lie within the ear
poly.reflexVertices.each(function (node) {
// eslint-disable-line no-loop-func
// Don't test points belonging to this triangle. node won't be
// equal to convexNode as node is reflex and vertex is convex.
if (node.data !== mainNode.prev.data && node.data !== mainNode.next.data) {
if (trig.contains(node.data) || trig.hasEdgeContaining(node.data)) {
success = false;
}
}
});
};
while (!success) {
_loop();
}
triangles.push(trig);
poly.removeVertex(mainNode.data);
}
// Need to do this to renumber the remaining vertices
triangles.push(Polygon.create(poly.vertices, this.plane));
return triangles;
}
// Sets the polygon's vertices
}, {
key: 'setVertices',
value: function setVertices(points, plane) {
var pointSet = points.toArray ? points.toArray() : points;
this.plane = plane && plane.normal ? plane.dup() : _plane.Plane.fromPoints(pointSet);
if (this.plane === null) {
return null;
}
this.vertices = new _linkedlist.LinkedList.Circular();
// Construct linked list of vertices. If each point is already a polygon
// vertex, we reference it rather than creating a new vertex.
var i = pointSet.length;
while (i--) {
var newVertex = pointSet[i].isConvex ? pointSet[i] : new Polygon.Vertex(pointSet[i]);
this.vertices.prepend(new _linkedlist.LinkedList.Node(newVertex));
}
this.clearCache();
this.populateVertexTypeLists();
return this;
}
// Constructs lists of convex and reflex vertices based on the main vertex list.
}, {
key: 'populateVertexTypeLists',
value: function populateVertexTypeLists() {
this.convexVertices = new _linkedlist.LinkedList.Circular();
this.reflexVertices = new _linkedlist.LinkedList.Circular();
var self = this;
this.vertices.each(function (node) {
// Split vertices into convex / reflex groups
// The LinkedList.Node class wraps each vertex so it can belong to many linked lists.
self[node.data.type(self) + 'Vertices'].append(new _linkedlist.LinkedList.Node(node.data));
});
}
// Gives the polygon its own local set of vertex points, allowing it to be
// transformed independently of polygons it may be sharing vertices with.
}, {
key: 'copyVertices',
value: function copyVertices() {
this.clearCache();
this.vertices.each(function (node) {
node.data = new Polygon.Vertex(node.data);
});
this.populateVertexTypeLists();
}
// Clear any cached properties
}, {
key: 'clearCache',
value: function clearCache() {
this.cached = {
triangles: null,
surfaceIntegralElements: null
};
}
// Set cached value and return the value
}, {
key: 'setCache',
value: function setCache(key, value) {
this.cached[key] = value;
return value;
}
// Returns a string representation of the polygon's vertices.
}, {
key: 'inspect',
value: function inspect() {
var points = [];
this.vertices.each(function (node) {
points.push(node.data.inspect());
});
return points.join(' -> ');
}
// Constructor function
}], [{
key: 'create',
value: function create(points, plane) {
var P = new Polygon();
return P.setVertices(points, plane);
}
}]);
return Polygon;
}();
var Vertex = exports.Vertex = function (_Vector) {
_inherits(Vertex, _Vector);
function Vertex(point) {
_classCallCheck(this, Vertex);
var _this2 = _possibleConstructorReturn(this, (Vertex.__proto__ || Object.getPrototypeOf(Vertex)).call(this));
_this2.setElements(point);
if (_this2.elements.length === 2) {
_this2.elements.push(0);
}
if (_this2.elements.length !== 3) {
var _ret2;
return _ret2 = null, _possibleConstructorReturn(_this2, _ret2);
}
return _this2;
}
// Returns true iff the vertex's internal angle is 0 <= x < 180
// in the context of the given polygon object. Returns null if the
// vertex does not exist in the polygon.
_createClass(Vertex, [{
key: 'isConvex',
value: function isConvex(polygon) {
var node = polygon.nodeFor(this);
if (node === null) {
return null;
}
var prev = node.prev.data;
var next = node.next.data;
var A = next.subtract(this);
var B = prev.subtract(this);
var theta = A.angleFrom(B);
if (theta <= _sylvester.Sylvester.precision) {
return true;
}
if (Math.abs(theta - Math.PI) <= _sylvester.Sylvester.precision) {
return false;
}
return A.cross(B).dot(polygon.plane.normal) > 0;
}
// Returns true iff the vertex's internal angle is 180 <= x < 360
}, {
key: 'isReflex',
value: function isReflex(polygon) {
var result = this.isConvex(polygon);
return result === null ? null : !result;
}
}, {
key: 'type',
value: function type(polygon) {
var result = this.isConvex(polygon);
return result === null ? null : result ? 'convex' : 'reflex';
}
// Method for converting a set of arrays/vectors/whatever to a set of Vertex objects
}], [{
key: 'convert',
value: function convert(points) {
var pointSet = points.toArray ? points.toArray() : points;
var list = [];
var n = pointSet.length;
for (var i = 0; i < n; i++) {
list.push(new Vertex(pointSet[i]));
}
return list;
}
}]);
return Vertex;
}(_vector.Vector);
Polygon.Vertex = Vertex;