86 lines
2.7 KiB
Python
86 lines
2.7 KiB
Python
#-*- coding: utf-8 -*-
|
|
# Copyright (C) 2011 by
|
|
# Conrad Lee <conradlee@gmail.com>
|
|
# Aric Hagberg <hagberg@lanl.gov>
|
|
# All rights reserved.
|
|
# BSD license.
|
|
from collections import defaultdict
|
|
import networkx as nx
|
|
__author__ = """\n""".join(['Conrad Lee <conradlee@gmail.com>',
|
|
'Aric Hagberg <aric.hagberg@gmail.com>'])
|
|
__all__ = ['k_clique_communities']
|
|
|
|
|
|
def k_clique_communities(G, k, cliques=None):
|
|
"""Find k-clique communities in graph using the percolation method.
|
|
|
|
A k-clique community is the union of all cliques of size k that
|
|
can be reached through adjacent (sharing k-1 nodes) k-cliques.
|
|
|
|
Parameters
|
|
----------
|
|
G : NetworkX graph
|
|
|
|
k : int
|
|
Size of smallest clique
|
|
|
|
cliques: list or generator
|
|
Precomputed cliques (use networkx.find_cliques(G))
|
|
|
|
Returns
|
|
-------
|
|
Yields sets of nodes, one for each k-clique community.
|
|
|
|
Examples
|
|
--------
|
|
>>> from networkx.algorithms.community import k_clique_communities
|
|
>>> G = nx.complete_graph(5)
|
|
>>> K5 = nx.convert_node_labels_to_integers(G,first_label=2)
|
|
>>> G.add_edges_from(K5.edges())
|
|
>>> c = list(k_clique_communities(G, 4))
|
|
>>> sorted(list(c[0]))
|
|
[0, 1, 2, 3, 4, 5, 6]
|
|
>>> list(k_clique_communities(G, 6))
|
|
[]
|
|
|
|
References
|
|
----------
|
|
.. [1] Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek,
|
|
Uncovering the overlapping community structure of complex networks
|
|
in nature and society Nature 435, 814-818, 2005,
|
|
doi:10.1038/nature03607
|
|
"""
|
|
if k < 2:
|
|
raise nx.NetworkXError("k=%d, k must be greater than 1." % k)
|
|
if cliques is None:
|
|
cliques = nx.find_cliques(G)
|
|
cliques = [frozenset(c) for c in cliques if len(c) >= k]
|
|
|
|
# First index which nodes are in which cliques
|
|
membership_dict = defaultdict(list)
|
|
for clique in cliques:
|
|
for node in clique:
|
|
membership_dict[node].append(clique)
|
|
|
|
# For each clique, see which adjacent cliques percolate
|
|
perc_graph = nx.Graph()
|
|
perc_graph.add_nodes_from(cliques)
|
|
for clique in cliques:
|
|
for adj_clique in _get_adjacent_cliques(clique, membership_dict):
|
|
if len(clique.intersection(adj_clique)) >= (k - 1):
|
|
perc_graph.add_edge(clique, adj_clique)
|
|
|
|
# Connected components of clique graph with perc edges
|
|
# are the percolated cliques
|
|
for component in nx.connected_components(perc_graph):
|
|
yield(frozenset.union(*component))
|
|
|
|
|
|
def _get_adjacent_cliques(clique, membership_dict):
|
|
adjacent_cliques = set()
|
|
for n in clique:
|
|
for adj_clique in membership_dict[n]:
|
|
if clique != adj_clique:
|
|
adjacent_cliques.add(adj_clique)
|
|
return adjacent_cliques
|