This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

332 lines
11 KiB
Python

#!/usr/bin/env python
import pytest
import networkx
import networkx as nx
from networkx.algorithms import find_cycle
from networkx.algorithms import minimum_cycle_basis
FORWARD = nx.algorithms.edgedfs.FORWARD
REVERSE = nx.algorithms.edgedfs.REVERSE
class TestCycles:
@classmethod
def setup_class(cls):
G = networkx.Graph()
nx.add_cycle(G, [0, 1, 2, 3])
nx.add_cycle(G, [0, 3, 4, 5])
nx.add_cycle(G, [0, 1, 6, 7, 8])
G.add_edge(8, 9)
cls.G = G
def is_cyclic_permutation(self, a, b):
n = len(a)
if len(b) != n:
return False
l = a + a
return any(l[i:i + n] == b for i in range(n))
def test_cycle_basis(self):
G = self.G
cy = networkx.cycle_basis(G, 0)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
cy = networkx.cycle_basis(G, 1)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
cy = networkx.cycle_basis(G, 9)
sort_cy = sorted(sorted(c) for c in cy)
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
# test disconnected graphs
nx.add_cycle(G, "ABC")
cy = networkx.cycle_basis(G, 9)
sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5],
['A', 'B', 'C']]
def test_cycle_basis(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.DiGraph()
cy = networkx.cycle_basis(G, 0)
def test_cycle_basis(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.MultiGraph()
cy = networkx.cycle_basis(G, 0)
def test_simple_cycles(self):
edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
G = nx.DiGraph(edges)
cc = sorted(nx.simple_cycles(G))
ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]]
assert len(cc) == len(ca)
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
def test_simple_cycles_graph(self):
with pytest.raises(nx.NetworkXNotImplemented):
G = nx.Graph()
c = sorted(nx.simple_cycles(G))
def test_unsortable(self):
# TODO What does this test do? das 6/2013
G = nx.DiGraph()
nx.add_cycle(G, ['a', 1])
c = list(nx.simple_cycles(G))
def test_simple_cycles_small(self):
G = nx.DiGraph()
nx.add_cycle(G, [1, 2, 3])
c = sorted(nx.simple_cycles(G))
assert len(c) == 1
assert self.is_cyclic_permutation(c[0], [1, 2, 3])
nx.add_cycle(G, [10, 20, 30])
cc = sorted(nx.simple_cycles(G))
assert len(cc) == 2
ca = [[1, 2, 3], [10, 20, 30]]
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
def test_simple_cycles_empty(self):
G = nx.DiGraph()
assert list(nx.simple_cycles(G)) == []
def test_complete_directed_graph(self):
# see table 2 in Johnson's paper
ncircuits = [1, 5, 20, 84, 409, 2365, 16064]
for n, c in zip(range(2, 9), ncircuits):
G = nx.DiGraph(nx.complete_graph(n))
assert len(list(nx.simple_cycles(G))) == c
def worst_case_graph(self, k):
# see figure 1 in Johnson's paper
# this graph has exactly 3k simple cycles
G = nx.DiGraph()
for n in range(2, k + 2):
G.add_edge(1, n)
G.add_edge(n, k + 2)
G.add_edge(2 * k + 1, 1)
for n in range(k + 2, 2 * k + 2):
G.add_edge(n, 2 * k + 2)
G.add_edge(n, n + 1)
G.add_edge(2 * k + 3, k + 2)
for n in range(2 * k + 3, 3 * k + 3):
G.add_edge(2 * k + 2, n)
G.add_edge(n, 3 * k + 3)
G.add_edge(3 * k + 3, 2 * k + 2)
return G
def test_worst_case_graph(self):
# see figure 1 in Johnson's paper
for k in range(3, 10):
G = self.worst_case_graph(k)
l = len(list(nx.simple_cycles(G)))
assert l == 3 * k
def test_recursive_simple_and_not(self):
for k in range(2, 10):
G = self.worst_case_graph(k)
cc = sorted(nx.simple_cycles(G))
rcc = sorted(nx.recursive_simple_cycles(G))
assert len(cc) == len(rcc)
for c in cc:
assert any(self.is_cyclic_permutation(c, r) for r in rcc)
for rc in rcc:
assert any(self.is_cyclic_permutation(rc, c) for c in cc)
def test_simple_graph_with_reported_bug(self):
G = nx.DiGraph()
edges = [(0, 2), (0, 3), (1, 0), (1, 3), (2, 1), (2, 4),
(3, 2), (3, 4), (4, 0), (4, 1), (4, 5), (5, 0),
(5, 1), (5, 2), (5, 3)]
G.add_edges_from(edges)
cc = sorted(nx.simple_cycles(G))
assert len(cc) == 26
rcc = sorted(nx.recursive_simple_cycles(G))
assert len(cc) == len(rcc)
for c in cc:
assert any(self.is_cyclic_permutation(c, rc) for rc in rcc)
for rc in rcc:
assert any(self.is_cyclic_permutation(rc, c) for c in cc)
# These tests might fail with hash randomization since they depend on
# edge_dfs. For more information, see the comments in:
# networkx/algorithms/traversal/tests/test_edgedfs.py
class TestFindCycle(object):
@classmethod
def setup_class(cls):
cls.nodes = [0, 1, 2, 3]
cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
def test_graph_nocycle(self):
G = nx.Graph(self.edges)
pytest.raises(nx.exception.NetworkXNoCycle, find_cycle, G, self.nodes)
def test_graph_cycle(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(find_cycle(G, self.nodes))
x_ = [(0, 1), (1, 2), (2, 0)]
assert x == x_
def test_graph_orientation_none(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(find_cycle(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 2), (2, 0)]
assert x == x_
def test_graph_orientation_original(self):
G = nx.Graph(self.edges)
G.add_edge(2, 0)
x = list(find_cycle(G, self.nodes, orientation='original'))
x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)]
assert x == x_
def test_digraph(self):
G = nx.DiGraph(self.edges)
x = list(find_cycle(G, self.nodes))
x_ = [(0, 1), (1, 0)]
assert x == x_
def test_digraph_orientation_none(self):
G = nx.DiGraph(self.edges)
x = list(find_cycle(G, self.nodes, orientation=None))
x_ = [(0, 1), (1, 0)]
assert x == x_
def test_digraph_orientation_original(self):
G = nx.DiGraph(self.edges)
x = list(find_cycle(G, self.nodes, orientation='original'))
x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
assert x == x_
def test_multigraph(self):
G = nx.MultiGraph(self.edges)
x = list(find_cycle(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 1)] # or (1, 0, 2)
# Hash randomization...could be any edge.
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
def test_multidigraph(self):
G = nx.MultiDiGraph(self.edges)
x = list(find_cycle(G, self.nodes))
x_ = [(0, 1, 0), (1, 0, 0)] # (1, 0, 1)
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
def test_digraph_ignore(self):
G = nx.DiGraph(self.edges)
x = list(find_cycle(G, self.nodes, orientation='ignore'))
x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
assert x == x_
def test_digraph_reverse(self):
G = nx.DiGraph(self.edges)
x = list(find_cycle(G, self.nodes, orientation='reverse'))
x_ = [(1, 0, REVERSE), (0, 1, REVERSE)]
assert x == x_
def test_multidigraph_ignore(self):
G = nx.MultiDiGraph(self.edges)
x = list(find_cycle(G, self.nodes, orientation='ignore'))
x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)] # or (1, 0, 1, 1)
assert x[0] == x_[0]
assert x[1][:2] == x_[1][:2]
assert x[1][3] == x_[1][3]
def test_multidigraph_ignore2(self):
# Loop traversed an edge while ignoring its orientation.
G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)])
x = list(find_cycle(G, [0, 1, 2], orientation='ignore'))
x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)]
assert x == x_
def test_multidigraph_original(self):
# Node 2 doesn't need to be searched again from visited from 4.
# The goal here is to cover the case when 2 to be researched from 4,
# when 4 is visited from the first time (so we must make sure that 4
# is not visited from 2, and hence, we respect the edge orientation).
G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)])
pytest.raises(nx.exception.NetworkXNoCycle,
find_cycle, G, [0, 1, 2, 3, 4], orientation='original')
def test_dag(self):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pytest.raises(nx.exception.NetworkXNoCycle,
find_cycle, G, orientation='original')
x = list(find_cycle(G, orientation='ignore'))
assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)]
def test_prev_explored(self):
# https://github.com/networkx/networkx/issues/2323
G = nx.DiGraph()
G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)])
pytest.raises(nx.NetworkXNoCycle, find_cycle, G, source=0)
x = list(nx.find_cycle(G, 1))
x_ = [(1, 2), (2, 1)]
assert x == x_
x = list(nx.find_cycle(G, 2))
x_ = [(2, 1), (1, 2)]
assert x == x_
x = list(nx.find_cycle(G))
x_ = [(1, 2), (2, 1)]
assert x == x_
def test_no_cycle(self):
# https://github.com/networkx/networkx/issues/2439
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)])
pytest.raises(nx.NetworkXNoCycle, find_cycle, G, source=0)
pytest.raises(nx.NetworkXNoCycle, find_cycle, G)
def assert_basis_equal(a, b):
assert sorted(a) == sorted(b)
class TestMinimumCycles(object):
@classmethod
def setup_class(cls):
T = nx.Graph()
nx.add_cycle(T, [1, 2, 3, 4], weight=1)
T.add_edge(2, 4, weight=5)
cls.diamond_graph = T
def test_unweighted_diamond(self):
mcb = minimum_cycle_basis(self.diamond_graph)
assert_basis_equal([sorted(c) for c in mcb], [[1, 2, 4], [2, 3, 4]])
def test_weighted_diamond(self):
mcb = minimum_cycle_basis(self.diamond_graph, weight='weight')
assert_basis_equal([sorted(c) for c in mcb], [[1, 2, 4], [1, 2, 3, 4]])
def test_dimensionality(self):
# checks |MCB|=|E|-|V|+|NC|
ntrial = 10
for _ in range(ntrial):
rg = nx.erdos_renyi_graph(10, 0.3)
nnodes = rg.number_of_nodes()
nedges = rg.number_of_edges()
ncomp = nx.number_connected_components(rg)
dim_mcb = len(minimum_cycle_basis(rg))
assert dim_mcb == nedges - nnodes + ncomp
def test_complete_graph(self):
cg = nx.complete_graph(5)
mcb = minimum_cycle_basis(cg)
assert all([len(cycle) == 3 for cycle in mcb])
def test_tree_graph(self):
tg = nx.balanced_tree(3, 3)
assert not minimum_cycle_basis(tg)