This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

93 lines
2.6 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (C) 2004-2019 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# Jean-Gabriel Young <jeangabriel.young@gmail.com>
# All rights reserved.
# BSD license.
#
# Authors: Jean-Gabriel Young (jeangabriel.young@gmail.com)
"""Bethe Hessian or deformed Laplacian matrix of graphs."""
import networkx as nx
from networkx.utils import not_implemented_for
__all__ = ['bethe_hessian_matrix']
@not_implemented_for('directed')
@not_implemented_for('multigraph')
def bethe_hessian_matrix(G, r=None, nodelist=None):
r"""Returns the Bethe Hessian matrix of G.
The Bethe Hessian is a family of matrices parametrized by r, defined as
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
diagonal matrix of node degrees, and I is the identify matrix. It is equal
to the graph laplacian when the regularizer r = 1.
The default choice of regularizer should be the ratio [2]
.. math::
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1
Parameters
----------
G : Graph
A NetworkX graph
r : float
Regularizer parameter
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
Returns
-------
H : Numpy matrix
The Bethe Hessian matrix of G, with paramter r.
Examples
--------
>>> import networkx as nx
>>> k =[3, 2, 2, 1, 0]
>>> G = nx.havel_hakimi_graph(k)
>>> H = nx.modularity_matrix(G)
See Also
--------
bethe_hessian_spectrum
to_numpy_matrix
adjacency_matrix
laplacian_matrix
References
----------
.. [1] A. Saade, F. Krzakala and L. Zdeborová
"Spectral clustering of graphs with the bethe hessian",
Advances in Neural Information Processing Systems. 2014.
.. [2] C. M. Lee, E. Levina
"Estimating the number of communities in networks by spectral methods"
arXiv:1507.00827, 2015.
"""
import scipy.sparse
if nodelist is None:
nodelist = list(G)
if r is None:
r = sum([d ** 2 for v, d in nx.degree(G)]) /\
sum([d for v, d in nx.degree(G)]) - 1
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, format='csr')
n, m = A.shape
diags = A.sum(axis=1)
D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format='csr')
I = scipy.sparse.eye(m, n, format='csr')
return (r ** 2 - 1) * I - r * A + D
# fixture for pytest
def setup_module(module):
import pytest
numpy = pytest.importorskip('numpy')