266 lines
9.1 KiB
Python
266 lines
9.1 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
base_transform.py
|
|
Base matemathical operations for SVG 3x3 matrices
|
|
|
|
Copyright (C) 2011 Cosmin Popescu, cosminadrianpopescu@gmail.com
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
"""
|
|
|
|
import re
|
|
import inkex
|
|
import os
|
|
from math import *
|
|
|
|
class BaseTransform(inkex.Effect):
|
|
unitMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
|
|
|
|
def isset(self, v, i = None):
|
|
try:
|
|
if (i is None):
|
|
v
|
|
else:
|
|
v[i]
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
def __init__(self):
|
|
inkex.Effect.__init__(self)
|
|
|
|
def sizeToPx(self, s, dim = "y"):
|
|
root = self.document.getroot()
|
|
try:
|
|
factor = float(root.attrib[inkex.addNS('export-' + dim + 'dpi', 'inkscape')])
|
|
except:
|
|
factor = 90
|
|
unit = ''
|
|
pattern = '[\\-\\d\\.]+([a-zA-Z][a-zA-Z])'
|
|
if (re.search(pattern, s)):
|
|
res = re.search(pattern, s)
|
|
unit = res.group(1)
|
|
pattern = '^([\\-\\d\\.]*)'
|
|
res = re.search(pattern, s)
|
|
n = float(res.group(1))
|
|
if unit == 'cm':
|
|
return (n / 2.54) * factor
|
|
elif unit == 'ft':
|
|
return n * 12 * factor
|
|
elif unit == 'in':
|
|
return n * factor
|
|
elif unit == 'm':
|
|
return ((n * 10) / 2.54) * factor
|
|
elif unit == 'mm':
|
|
return ((n / 10) / 2.54) * factor
|
|
elif unit == 'pc':
|
|
return ((n * 2.36228956229) / 2.54) * factor
|
|
elif unit == 'pt':
|
|
return (((n / 2.83464646465) / 10) / 2.54) * factor
|
|
elif unit == 'px' or unit == '':
|
|
return n
|
|
|
|
return 0
|
|
|
|
def transform(self, el):
|
|
result = self.unitMatrix
|
|
if (el.tag == inkex.addNS('svg', 'svg')):
|
|
return result
|
|
|
|
if (not self.isset(el.attrib, 'transform')):
|
|
return self.multiply(self.transform(el.getparent()), result)
|
|
pattern = '(matrix|translate|scale|rotate|skewX|skewY)[\\s|,]*\\(([^\\)]*)\\)'
|
|
transforms = re.findall(pattern, el.attrib['transform'])
|
|
|
|
for transform in transforms:
|
|
values = re.split('[\\s|,]+', transform[1])
|
|
for i in range(len(values)):
|
|
values[i] = float(values[i])
|
|
function = transform[0]
|
|
if (function == 'matrix'):
|
|
a = [[values[0], values[2], values[4]],
|
|
[values[1], values[3], values[5]],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
elif (function == 'translate'):
|
|
a = [[1, 0, values[0]],
|
|
[0, 1, values[1]],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
elif (function == 'scale'):
|
|
a = [[values[0], 0, 0],
|
|
[0, values[1], 0],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
elif (function == 'rotate'):
|
|
if (len(values) == 1):
|
|
a = [[math.cos(values[0]), -math.sin(values[0]), 0],
|
|
[math.sin(values[0]), math.cos(values[0]), 0],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
else:
|
|
a = [[1, 0, values[2]],
|
|
[0, 1, values[2]],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
a = [[math.cos(values[0]), -math.sin(values[0]), 0],
|
|
[math.sin(values[0]), math.cos(values[0]), 0],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
a = [[1, 0, -values[2]],
|
|
[0, 1, -values[2]],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
elif (function == 'skewX'):
|
|
a = [[1, math.tan(values[0]), 0],
|
|
[0, 1, 0],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
elif (function == 'skewY'):
|
|
a = [[1, 0, 0],
|
|
[math.tan(values[0]), 1, 0],
|
|
[0, 0, 1]]
|
|
result = self.multiply(result, a)
|
|
|
|
return self.multiply(self.transform(el.getparent()), result)
|
|
|
|
|
|
def getPosition(self, el):
|
|
if not self.isset(el.attrib, 'x'):
|
|
return False
|
|
|
|
x = self.sizeToPx(el.attrib['x'], 'x')
|
|
y = self.sizeToPx(el.attrib['y'], 'y')
|
|
v = [x, y, 1]
|
|
t = self.transform(el)
|
|
v = self.multiply(t, v)
|
|
|
|
return {'coordinates': v, 'matrix': t}
|
|
|
|
def setPosition(self, el, position):
|
|
c = position['coordinates']
|
|
a = position['matrix']
|
|
if (not self.isUnitMatrix(a)):
|
|
c = self.multiply(self.inverse(a), c)
|
|
el.set('x', str(c[0]))
|
|
el.set('y', str(c[1]))
|
|
|
|
|
|
def determinant(self, a):
|
|
if len(a) != 3:
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
det = a[0][0] * (a[1][1] * a[2][2] - a[2][1] * a[1][2]) - a[0][1] * (a[1][0] * a[2][2] - a[2][0] * a[1][2]) + a[0][2] * (a[1][0] * a[2][1] - a[2][0] * a[1][1])
|
|
|
|
if (det == 0):
|
|
det = 0.00001
|
|
|
|
return det
|
|
|
|
def minors(self, a):
|
|
if len(a) != 3:
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
return [[a[1][1] * a[2][2] - a[2][1] * a[1][2], a[1][0] * a[2][2] - a[2][0] * a[1][2], a[1][0] * a[2][1] - a[2][0] * a[1][1]],
|
|
[a[0][1] * a[2][2] - a[2][1] * a[0][2], a[0][0] * a[2][2] - a[0][2] * a[2][0], a[0][0] * a[2][1] - a[2][0] * a[0][1]],
|
|
[a[0][1] * a[1][2] - a[1][1] * a[0][2], a[0][0] * a[1][2] - a[0][1] * a[0][2], a[0][0] * a[1][1] - a[1][0] * a[0][1]]
|
|
]
|
|
|
|
def cofactors(self, a):
|
|
if len(a) != 3:
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
return [[a[0][0], -a[0][1], a[0][2]],
|
|
[-a[1][0], a[1][1], -a[1][2]],
|
|
[a[2][0], -a[2][1], a[2][2]]
|
|
]
|
|
|
|
def adjoint(self, a):
|
|
if len(a) != 3:
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
return [[a[0][0], a[1][0], a[2][0]],
|
|
[a[0][1], a[1][1], a[2][1]],
|
|
[a[0][2], a[1][2], a[2][2]]
|
|
]
|
|
|
|
def inverse(self, a):
|
|
if len(a) != 3:
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
det = self.determinant(a)
|
|
m = self.minors(a)
|
|
c = self.cofactors(m)
|
|
adj = self.adjoint(c)
|
|
|
|
return [[adj[0][0] / det, adj[0][1] / det, adj[0][2] / det],
|
|
[adj[1][0] / det, adj[1][1] / det, adj[1][2] / det],
|
|
[adj[2][0] / det, adj[2][1] / det, adj[2][2] / det]
|
|
]
|
|
|
|
def multiply(self, a, v):
|
|
if len(a) != 3:
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
if (len(v) != 3):
|
|
return False
|
|
|
|
if (not self.isset(v[0], 0)):
|
|
return [a[0][0] * v[0] + a[0][1] * v[1] + a[0][2] * v[2],
|
|
a[1][0] * v[0] + a[1][1] * v[1] + a[1][2] * v[2],
|
|
a[2][0] * v[0] + a[2][1] * v[1] + a[2][2] * v[2]
|
|
]
|
|
else:
|
|
return [[a[0][0] * v[0][0] + a[0][1] * v[1][0] + a[0][2] * v[2][0], a[0][0] * v[0][1] + a[0][1] * v[1][1] + a[0][2] * v[2][1], a[0][0] * v[0][2] + a[0][1] * v[1][2] + a[0][2] * v[2][2]],
|
|
[a[1][0] * v[0][0] + a[1][1] * v[1][0] + a[1][2] * v[2][0], a[1][0] * v[0][1] + a[1][1] * v[1][1] + a[1][2] * v[2][1], a[1][0] * v[0][2] + a[1][1] * v[1][2] + a[1][2] * v[2][2]],
|
|
[a[2][0] * v[0][0] + a[2][1] * v[1][0] + a[2][2] * v[2][0], a[2][0] * v[0][1] + a[2][1] * v[1][1] + a[2][2] * v[2][1], a[2][0] * v[0][2] + a[2][1] * v[1][2] + a[2][2] * v[2][2]]
|
|
]
|
|
|
|
def isUnitMatrix(self, a):
|
|
if (len(a) != 3):
|
|
return False
|
|
if (len(a[0]) != 3):
|
|
return False
|
|
|
|
for i in range(3):
|
|
for j in range(3):
|
|
if (a[i][j] != self.unitMatrix[i][j]):
|
|
return False
|
|
|
|
return True
|
|
|
|
def reParse(self):
|
|
if os.name == 'nt':
|
|
path = os.environ['USERPROFILE']
|
|
else:
|
|
path = os.path.expanduser("~")
|
|
text = inkex.etree.tostring(self.document.getroot())
|
|
f = open(path + '/tmp.svg', 'w')
|
|
f.write(text)
|
|
f.close()
|
|
self.parse(path + '/tmp.svg')
|
|
|
|
os.remove(path + '/tmp.svg')
|
|
|
|
def matrix2string(self, a):
|
|
return 'matrix(' + str(a[0][0]) + ',' + str(a[1][0]) + ',' + str(a[0][1]) + ',' + str(a[1][1]) + ',' + str(a[0][2]) + ',' + str(a[1][2]) + ')' |