This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/fablabchemnitz/tab_generator/tab_generator.py
2021-07-11 00:13:45 +02:00

669 lines
32 KiB
Python

#!/usr/bin/env python3
#
# Copyright (C) [2021] [Joseph Zakar], [observing@gmail.com]
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
Given a closed path of straight lines, this program generates a paper model containing
tabs and score lines for each straight edge.
"""
import inkex
from inkex import Path, Color
from lxml import etree
import math
import copy
import inspect
class pathStruct(object):
def __init__(self):
self.id="path0000"
self.path=[]
self.enclosed=False
def __str__(self):
return self.path
class pnPoint(object):
# This class came from https://github.com/JoJocoder/PNPOLY
def __init__(self,p):
self.p=p
def __str__(self):
return self.p
def InPolygon(self,polygon,BoundCheck=False):
inside=False
if BoundCheck:
minX=polygon[0][0]
maxX=polygon[0][0]
minY=polygon[0][1]
maxY=polygon[0][1]
for p in polygon:
minX=min(p[0],minX)
maxX=max(p[0],maxX)
minY=min(p[1],minY)
maxY=max(p[1],maxY)
if self.p[0]<minX or self.p[0]>maxX or self.p[1]<minY or self.p[1]>maxY:
return False
j=len(polygon)-1
for i in range(len(polygon)):
if ((polygon[i][1]>self.p[1])!=(polygon[j][1]>self.p[1]) and (self.p[0]<(polygon[j][0]-polygon[i][0])*(self.p[1]-polygon[i][1])/( polygon[j][1] - polygon[i][1] ) + polygon[i][0])):
inside =not inside
j=i
return inside
class TabGenerator(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--usermenu")
pars.add_argument("--tabangle", type=float, default=45.0, help="Angle of tab edges in degrees")
pars.add_argument("--tabheight", type=float, default=0.4, help="Height of tab in dimensional units")
pars.add_argument("--dashlength", type=float, default=0.1, help="Length of dashline in dimentional units (zero for solid line)")
pars.add_argument("--cosmetic_dash_style", type=inkex.Boolean, default=False, help="Cosmetic dash lines")
pars.add_argument("--tabsets", default="both", help="Tab placement on polygons with cutouts")
pars.add_argument("--unit", default="in", help="Dimensional units of selected paths")
pars.add_argument("--color_solid", type=Color, default='4278190335', help="Solid line color")
pars.add_argument("--color_dash", type=Color, default='65535', help="Solid line dash")
pars.add_argument("--print_debug", type=inkex.Boolean, default=True, help="Print debug info")
pars.add_argument("--keep_original", type=inkex.Boolean, default=False, help="Keep original elements")
def drawline(self, dstr, name, parent, sstr=None):
'''
draw SVG line segment(s) between the given (raw) points
'''
line_style = {'stroke':'#000000','stroke-width':'1','fill':'none'}
if sstr == None:
stylestr = str(inkex.Style(line_style))
else:
stylestr = sstr
el = parent.add(inkex.PathElement())
el.path = dstr
el.style = sstr
el.label = name
def pathInsidePath(self, path, testpath):
enclosed = True
for tp in testpath:
# If any point in the testpath is outside the path, it's not enclosed
if self.insidePath(path, tp) == False:
enclosed = False
return enclosed # True if testpath is fully enclosed in path
return enclosed
def insidePath(self, path, p):
point = pnPoint((p.x, p.y))
pverts = []
for pnum in path:
pverts.append((pnum.x, pnum.y))
isInside = point.InPolygon(pverts, True)
return isInside # True if point p is inside path
def makescore(self, pt1, pt2, dashlength):
# Draws a dashed line of dashlength between two points
# Dash = dashlength (in inches) space followed by dashlength mark
# if dashlength is zero, we want a solid line
apt1 = inkex.paths.Line(0.0,0.0)
apt2 = inkex.paths.Line(0.0,0.0)
ddash = ''
if math.isclose(dashlength, 0.0):
#inkex.utils.debug("Draw solid dashline")
ddash = ' M '+str(pt1.x)+','+str(pt1.y)+' L '+str(pt2.x)+','+str(pt2.y)
else:
if math.isclose(pt1.y, pt2.y):
#inkex.utils.debug("Draw horizontal dashline")
if pt1.x < pt2.x:
xcushion = pt2.x - dashlength
xpt = pt1.x
ypt = pt1.y
else:
xcushion = pt1.x - dashlength
xpt = pt2.x
ypt = pt2.y
ddash = ''
done = False
while not(done):
if (xpt + dashlength*2) <= xcushion:
xpt = xpt + dashlength
ddash = ddash + ' M ' + str(xpt) + ',' + str(ypt)
xpt = xpt + dashlength
ddash = ddash + ' L ' + str(xpt) + ',' + str(ypt)
else:
done = True
elif math.isclose(pt1.x, pt2.x):
#inkex.utils.debug("Draw vertical dashline")
if pt1.y < pt2.y:
ycushion = pt2.y - dashlength
xpt = pt1.x
ypt = pt1.y
else:
ycushion = pt1.y - dashlength
xpt = pt2.x
ypt = pt2.y
ddash = ''
done = False
while not(done):
if(ypt + dashlength*2) <= ycushion:
ypt = ypt + dashlength
ddash = ddash + ' M ' + str(xpt) + ',' + str(ypt)
ypt = ypt + dashlength
ddash = ddash + ' L ' + str(xpt) + ',' + str(ypt)
else:
done = True
else:
#inkex.utils.debug("Draw sloping dashline")
if pt1.y > pt2.y:
apt1.x = pt1.x
apt1.y = pt1.y
apt2.x = pt2.x
apt2.y = pt2.y
else:
apt1.x = pt2.x
apt1.y = pt2.y
apt2.x = pt1.x
apt2.y = pt1.y
m = (apt1.y-apt2.y)/(apt1.x-apt2.x)
theta = math.atan(m)
msign = (m>0) - (m<0)
ycushion = apt2.y + dashlength*math.sin(theta)
xcushion = apt2.x + msign*dashlength*math.cos(theta)
ddash = ''
xpt = apt1.x
ypt = apt1.y
done = False
while not(done):
nypt = ypt - dashlength*2*math.sin(theta)
nxpt = xpt - msign*dashlength*2*math.cos(theta)
if (nypt >= ycushion) and (((m<0) and (nxpt <= xcushion)) or ((m>0) and (nxpt >= xcushion))):
# move to end of space / beginning of mark
xpt = xpt - msign*dashlength*math.cos(theta)
ypt = ypt - msign*dashlength*math.sin(theta)
ddash = ddash + ' M ' + str(xpt) + ',' + str(ypt)
# draw the mark
xpt = xpt - msign*dashlength*math.cos(theta)
ypt = ypt - msign*dashlength*math.sin(theta)
ddash = ddash + ' L ' + str(xpt) + ',' + str(ypt)
else:
done = True
return ddash
def detectIntersect(self, x1, y1, x2, y2, x3, y3, x4, y4):
td = (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)
if td == 0:
# These line segments are parallel
return False
t = ((x1-x3)*(y3-y4)-(y1-y3)*(x3-x4))/td
if (0.0 <= t) and (t <= 1.0):
return True
else:
return False
def makeTab(self, tpath, pt1, pt2, tabht, taba):
# tpath - the pathstructure containing pt1 and pt2
# pt1, pt2 - the two points where the tab will be inserted
# tabht - the height of the tab
# taba - the angle of the tab sides
# returns the two tab points in order of closest to pt1
tpt1 = inkex.paths.Line(0.0,0.0)
tpt2 = inkex.paths.Line(0.0,0.0)
currTabHt = tabht
currTabAngle = taba
testAngle = 1.0
testHt = currTabHt * 0.01
adjustTab = 0
tabDone = False
while not tabDone:
# Let's find out the orientation of the tab
if math.isclose(pt1.x, pt2.x):
# It's vertical. Let's try the right side
if pt1.y < pt2.y:
tpt1.x = pt1.x + testHt
tpt2.x = pt2.x + testHt
tpt1.y = pt1.y + testHt/math.tan(math.radians(testAngle))
tpt2.y = pt2.y - testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.x = pt1.x - currTabHt
tpt2.x = pt2.x - currTabHt
else:
tpt1.x = pt1.x + currTabHt
tpt2.x = pt2.x + currTabHt
tpt1.y = pt1.y + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.y = pt2.y - currTabHt/math.tan(math.radians(currTabAngle))
else: # pt2.y < pt1.y
tpt1.x = pt1.x + testHt
tpt2.x = pt2.x + testHt
tpt1.y = pt1.y - testHt/math.tan(math.radians(testAngle))
tpt2.y = pt2.y + testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.x = pt1.x - currTabHt
tpt2.x = pt2.x - currTabHt
else:
tpt1.x = pt1.x + currTabHt
tpt2.x = pt2.x + currTabHt
tpt1.y = pt1.y - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.y = pt2.y + currTabHt/math.tan(math.radians(currTabAngle))
elif math.isclose(pt1.y, pt2.y):
# It's horizontal. Let's try the top
if pt1.x < pt2.x:
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x + testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x - testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x - currTabHt/math.tan(math.radians(currTabAngle))
else: # pt2.x < pt1.x
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x - testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x + testHt/math.tan(math.radians(testAngle))
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x + currTabHt/math.tan(math.radians(currTabAngle))
else: # the orientation is neither horizontal nor vertical
# Let's get the slope of the line between the points
# Because Inkscape's origin is in the upper-left corner,
# a positive slope (/) will yield a negative value
slope = (pt2.y - pt1.y)/(pt2.x - pt1.x)
# Let's get the angle to the horizontal
theta = math.degrees(math.atan(slope))
# Let's construct a horizontal tab
seglength = math.sqrt((pt1.x-pt2.x)**2 +(pt1.y-pt2.y)**2)
if slope < 0.0:
if pt1.x < pt2.x:
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x + testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x - testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x - currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
else: # pt1.x > pt2.x
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x - testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x + testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x + currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
else: # slope > 0.0
if pt1.x < pt2.x:
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x + testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x - testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x + currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x - currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
else: # pt1.x > pt2.x
tpt1.y = pt1.y - testHt
tpt2.y = pt2.y - testHt
tpt1.x = pt1.x - testHt/math.tan(math.radians(testAngle))
tpt2.x = pt2.x + testHt/math.tan(math.radians(testAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
pnpt1 = inkex.paths.Move(tpt1.x, tpt1.y)
pnpt2 = inkex.paths.Move(tpt2.x, tpt2.y)
if ((not tpath.enclosed) and (self.insidePath(tpath.path, pnpt1) or self.insidePath(tpath.path, pnpt2))) or \
(tpath.enclosed and ((not self.insidePath(tpath.path, pnpt1)) and (not self.insidePath(tpath.path, pnpt2)))):
tpt1.y = pt1.y + currTabHt
tpt2.y = pt2.y + currTabHt
else:
tpt1.y = pt1.y - currTabHt
tpt2.y = pt2.y - currTabHt
tpt1.x = pt1.x - currTabHt/math.tan(math.radians(currTabAngle))
tpt2.x = pt2.x + currTabHt/math.tan(math.radians(currTabAngle))
tl1 = [('M', [pt1.x,pt1.y])]
tl1 += [('L', [tpt1.x, tpt1.y])]
ele1 = inkex.Path(tl1)
tl2 = [('M', [pt1.x,pt1.y])]
tl2 += [('L', [tpt2.x, tpt2.y])]
ele2 = inkex.Path(tl2)
thetal1 = ele1.rotate(theta, [pt1.x,pt1.y])
thetal2 = ele2.rotate(theta, [pt2.x,pt2.y])
tpt1.x = thetal1[1].x
tpt1.y = thetal1[1].y
tpt2.x = thetal2[1].x
tpt2.y = thetal2[1].y
# Check to see if any tabs intersect each other
if self.detectIntersect(pt1.x, pt1.y, tpt1.x, tpt1.y, pt2.x, pt2.y, tpt2.x, tpt2.y):
# Found an intersection.
if adjustTab == 0:
# Try increasing the tab angle in one-degree increments
currTabAngle = currTabAngle + 1.0
if currTabAngle > 88.0: # We're not increasing the tab angle above 89 degrees
adjustTab = 1
currTabAngle = taba
if adjustTab == 1:
# So, try reducing the tab height in 20% increments instead
currTabHt = currTabHt - tabht*0.2 # Could this lead to a zero tab_height?
if currTabHt <= 0.0:
# Give up
currTabHt = tabht
adjustTab = 2
if adjustTab == 2:
tabDone = True # Just show the failure
else:
tabDone = True
return tpt1,tpt2
def effect(self):
scale = self.svg.unittouu('1'+self.options.unit)
layer = self.svg.get_current_layer()
tab_angle = float(self.options.tabangle)
tab_height = float(self.options.tabheight) * scale
dashlength = float(self.options.dashlength) * scale
tabsets = self.options.tabsets
npaths = []
savid = ''
elems = []
pc = 0
for selem in self.svg.selection.filter(inkex.PathElement):
elems.append(selem)
if len(elems) == 0:
raise inkex.AbortExtension("Nothing selected")
for elem in elems:
npaths.clear()
escale = 1.0
#inkex.utils.debug(elem.attrib)
if 'transform' in elem.attrib:
transforms = elem.attrib['transform'].split()
for tf in transforms:
if tf.startswith('scale'):
escale = float(tf.split('(')[1].split(')')[0])
last_letter = 'Z'
savid = elem.get_id()
idmod = 0
parent = elem.getparent()
#if parent != self.svg.root:
# elem.path.transform = elem.path.transform(parent.composed_transform())
elementPath = elem.path.to_non_shorthand().to_absolute()
isClosed = False
raw = elementPath.to_arrays()
if raw[-1][0] == 'Z' or \
(raw[-1][0] == 'L' and raw[0][1] == raw[-1][1]) or \
(raw[-1][0] == 'C' and raw[0][1] == [raw[-1][1][-2], raw[-1][1][-1]]) \
: #if first is last point the path is also closed. The "Z" command is not required
isClosed = True
if isClosed is False:
if self.options.print_debug is True:
self.msg("Warning! Path {} is not closed. Skipping ...".format(elem.get('id')))
continue
for ptoken in elementPath: # For each point in the path
ptx2 = None
pty2 = None
if ptoken.letter == 'M': # Starting point
# Hold this point in case we receive a Z
ptx1 = mx = ptoken.x * escale
pty1 = my = ptoken.y * escale
'''
Assign a structure to the new path. We assume that there is
only one path and, therefore, it isn't enclosed by a
sub-path. However, we'll suffix the ID, if we find a
sub-path.
'''
npath = pathStruct()
npath.enclosed = False
if idmod > 0:
npath.id = elem.get_id()+"-"+str(idmod)
else:
npath.id = elem.get_id()
idmod += 1
npath.path.append(inkex.paths.Move(ptx1,pty1))
else:
if last_letter != 'M':
ptx1 = ptx2
pty1 = pty2
if ptoken.letter == 'L':
ptx2 = ptoken.x * escale
pty2 = ptoken.y * escale
elif ptoken.letter == 'H':
ptx2 = ptoken.x * escale
pty2 = pty1
elif ptoken.letter == 'V':
ptx2 = ptx1
pty2 = ptoken.y * escale
elif ptoken.letter == 'Z':
ptx2 = mx
pty2 = my
else:
raise inkex.AbortExtension("Unrecognized path command {0}. Please convert to polyline before!".format(ptoken.letter))
npath.path.append(inkex.paths.Line(ptx2,pty2))
if ptoken.letter == 'Z':
npaths.append(npath)
last_letter = ptoken.letter
# check for cutouts
if idmod > 1:
for apath in npaths: # We test these paths to see if they are fully enclosed
for bpath in npaths: # by these paths
if apath.id != bpath.id:
if self.pathInsidePath(bpath.path, apath.path):
apath.enclosed = True
# add tabs to current path(s)
if 'style' in elem.attrib:
sstr = elem.attrib['style']
if not math.isclose(escale, 1.0):
lsstr = sstr.split(';')
for stoken in range(len(lsstr)):
if lsstr[stoken].startswith('stroke-width'):
swt = lsstr[stoken].split(':')[1]
swf = str(float(swt)*escale)
lsstr[stoken] = lsstr[stoken].replace(swt, swf)
if lsstr[stoken].startswith('stroke-miterlimit'):
swt = lsstr[stoken].split(':')[1]
swf = str(float(swt)*escale)
lsstr[stoken] = lsstr[stoken].replace(swt, swf)
sstr = ";".join(lsstr)
else:
sstr = None
dsub = '' # Used for building sub-paths
dprop = '' # Used for building the main path
dscore = '' # Used for building dashlines
for apath in npaths:
mpath = [apath.path[0]] # init output path with first point of input path
for ptn in range(len(apath.path)-1):
if (tabsets == 'both') or (((tabsets == 'inside') and (apath.enclosed)) or ((tabsets == 'outside') and (not apath.enclosed))):
tabpt1, tabpt2 = self.makeTab(apath, apath.path[ptn], apath.path[ptn+1], tab_height, tab_angle)
mpath.append(tabpt1)
mpath.append(tabpt2)
dscore = dscore + self.makescore(apath.path[ptn], apath.path[ptn+1],dashlength)
mpath.append(apath.path[ptn+1])
if apath.id == elem.get_id():
for nodes in range(len(mpath)):
if nodes == 0:
dprop = 'M ' # This is the main path, which should appear first
else:
dprop = dprop + ' L '
dprop = dprop + str(mpath[nodes].x) + ',' + str(mpath[nodes].y)
## and close the path
dprop = dprop + ' Z'
else:
for nodes in range(len(mpath)):
if nodes == 0:
dsub = dsub + ' M ' # This is a sub-path, which should follow the main path
else:
dsub = dsub + ' L '
dsub = dsub + str(mpath[nodes].x) + ',' + str(mpath[nodes].y)
## and close the path
dsub = dsub + ' Z'
dprop = dprop + dsub # combine all the paths
# lump together all the score lines
group = inkex.elements._groups.Group()
group.label = 'group'+str(pc)+'ms'
self.drawline(dprop,'model'+str(pc),group,sstr+';stroke:{}'.format(self.options.color_solid)) # Output the model
if dscore != '':
dscore_style = sstr+';stroke:{}'.format(self.options.color_dash)
if self.options.cosmetic_dash_style is True:
dscore_style += ';stroke-dasharray:{}'.format(3, 3)
self.drawline(dscore,'score'+str(pc),group,dscore_style) # Output the scorelines separately
layer.append(group)
pc += 1
if self.options.keep_original is False:
elem.delete()
if __name__ == '__main__':
TabGenerator().run()