This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-31 16:05:02 +02:00

91 lines
3.7 KiB
Python

#! /usr/bin/env python3
import inkex
import numpy as np
from math import pi, sin, cos
from Path import Path
from Pattern import Pattern
# Select name of class, inherits from Pattern
# TODO:
# 1) Implement __init__ method to get all custom options and then call Pattern's __init__
# 2) Implement generate_path_tree to define all of the desired strokes
class PleatCircular(Pattern):
def __init__(self):
Pattern.__init__(self)
self.add_argument("-p", "--pattern", default="pleat_circular", help="Origami pattern")
self.add_argument("--radius", type=float, default=55.0, help="Radius of circle")
self.add_argument("--ratio", type=float, default=0.4, help="Opening ratio")
self.add_argument("--rings", type=int, default=15, help="Number of rings")
self.add_argument("--simulation_mode", type=inkex.Boolean, default=True, help="Approximate circle and draw semicreases for simulation?")
self.add_argument("--sides", type=int, default=20, help="Number of sides for polygon approximating half circle")
def generate_path_tree(self):
""" Specialized path generation for your origami pattern
"""
# retrieve saved parameters
unit_factor = self.calc_unit_factor()
R = self.options.radius * unit_factor
ratio = self.options.ratio
r = R * ratio
rings = self.options.rings
dr = (1.-ratio)*R/rings
self.translate = (R, R)
if not self.options.simulation_mode:
inner_circles = []
for i in range(1, rings):
inner_circles.append(Path((0, 0), radius=r + i*dr, style='m' if i % 2 else 'v'))
edges = [Path((0, 0), radius=R, style='e'),
Path((0, 0), radius=r, style='e')]
self.path_tree = [inner_circles, edges]
# append semicreases for simulation
else:
sides = self.options.sides
dtheta = pi / sides
# create diagonals
diagonals = []
for i in range(sides):
p1 = (0, 0)
p2 = (R * cos((1 + i * 2) * dtheta), R * sin((1 + i * 2) * dtheta))
diagonals.append(Path([p1, p2], 'u'))
s = sin(dtheta)
c = cos(dtheta)
# Edge
paths = [Path([(c * R, -s * R), (R, 0), (c * R, s * R)], style='e'),
Path([(c * r, -s * r), (r, 0), (c * r, s * r)], style='e')]
# MV circles
for i in range(1, rings):
r_i = r + i * dr
paths.append(Path([(c * r_i, -s * r_i), (r_i, 0), (c * r_i, s * r_i)],
style='m' if i % 2 else 'v'))
# Semicreases
top = []
bottom = []
for i in range(rings + 1):
r_i = r + i*dr
top.append((r_i*(1 + (i % 2)*(c-1)), -(i % 2)*s*r_i))
bottom.append((r_i*(1 + (i % 2)*(c-1)), (i % 2)*s*r_i))
paths = paths + [Path([(r, 0), (R, 0)], 's'), # straight line 1
Path([(r*c, r*s), (R*c, R*s)], 's', invert=True), # straight line 2
Path(top, 's'), # top half of semicrease pattern
Path(bottom, 's')] # bottom half of semicrease pattern
all_paths = [paths]
for i in range(1, sides):
all_paths.append(Path.list_rotate(all_paths[0], i*2*dtheta))
self.path_tree = all_paths
# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
if __name__ == '__main__':
PleatCircular().run()