This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

261 lines
9.3 KiB
Python

import networkx as nx
import pytest
class TestImmediateDominators(object):
def test_exceptions(self):
G = nx.Graph()
G.add_node(0)
pytest.raises(nx.NetworkXNotImplemented, nx.immediate_dominators, G, 0)
G = nx.MultiGraph(G)
pytest.raises(nx.NetworkXNotImplemented, nx.immediate_dominators, G, 0)
G = nx.DiGraph([[0, 0]])
pytest.raises(nx.NetworkXError, nx.immediate_dominators, G, 1)
def test_singleton(self):
G = nx.DiGraph()
G.add_node(0)
assert nx.immediate_dominators(G, 0) == {0: 0}
G.add_edge(0, 0)
assert nx.immediate_dominators(G, 0) == {0: 0}
def test_path(self):
n = 5
G = nx.path_graph(n, create_using=nx.DiGraph())
assert (nx.immediate_dominators(G, 0) ==
{i: max(i - 1, 0) for i in range(n)})
def test_cycle(self):
n = 5
G = nx.cycle_graph(n, create_using=nx.DiGraph())
assert (nx.immediate_dominators(G, 0) ==
{i: max(i - 1, 0) for i in range(n)})
def test_unreachable(self):
n = 5
assert n > 1
G = nx.path_graph(n, create_using=nx.DiGraph())
assert (nx.immediate_dominators(G, n // 2) ==
{i: max(i - 1, n // 2) for i in range(n // 2, n)})
def test_irreducible1(self):
# Graph taken from Figure 2 of
# K. D. Cooper, T. J. Harvey, and K. Kennedy.
# A simple, fast dominance algorithm.
# Software Practice & Experience, 4:110, 2001.
edges = [(1, 2), (2, 1), (3, 2), (4, 1), (5, 3), (5, 4)]
G = nx.DiGraph(edges)
assert (nx.immediate_dominators(G, 5) ==
{i: 5 for i in range(1, 6)})
def test_irreducible2(self):
# Graph taken from Figure 4 of
# K. D. Cooper, T. J. Harvey, and K. Kennedy.
# A simple, fast dominance algorithm.
# Software Practice & Experience, 4:110, 2001.
edges = [(1, 2), (2, 1), (2, 3), (3, 2), (4, 2), (4, 3), (5, 1),
(6, 4), (6, 5)]
G = nx.DiGraph(edges)
assert (nx.immediate_dominators(G, 6) ==
{i: 6 for i in range(1, 7)})
def test_domrel_png(self):
# Graph taken from https://commons.wikipedia.org/wiki/File:Domrel.png
edges = [(1, 2), (2, 3), (2, 4), (2, 6), (3, 5), (4, 5), (5, 2)]
G = nx.DiGraph(edges)
assert (nx.immediate_dominators(G, 1) ==
{1: 1, 2: 1, 3: 2, 4: 2, 5: 2, 6: 2})
# Test postdominance.
with nx.utils.reversed(G):
assert (nx.immediate_dominators(G, 6) ==
{1: 2, 2: 6, 3: 5, 4: 5, 5: 2, 6: 6})
def test_boost_example(self):
# Graph taken from Figure 1 of
# http://www.boost.org/doc/libs/1_56_0/libs/graph/doc/lengauer_tarjan_dominator.htm
edges = [(0, 1), (1, 2), (1, 3), (2, 7), (3, 4), (4, 5), (4, 6),
(5, 7), (6, 4)]
G = nx.DiGraph(edges)
assert (nx.immediate_dominators(G, 0) ==
{0: 0, 1: 0, 2: 1, 3: 1, 4: 3, 5: 4, 6: 4, 7: 1})
# Test postdominance.
with nx.utils.reversed(G):
assert (nx.immediate_dominators(G, 7) ==
{0: 1, 1: 7, 2: 7, 3: 4, 4: 5, 5: 7, 6: 4, 7: 7})
class TestDominanceFrontiers(object):
def test_exceptions(self):
G = nx.Graph()
G.add_node(0)
pytest.raises(nx.NetworkXNotImplemented, nx.dominance_frontiers, G, 0)
G = nx.MultiGraph(G)
pytest.raises(nx.NetworkXNotImplemented, nx.dominance_frontiers, G, 0)
G = nx.DiGraph([[0, 0]])
pytest.raises(nx.NetworkXError, nx.dominance_frontiers, G, 1)
def test_singleton(self):
G = nx.DiGraph()
G.add_node(0)
assert nx.dominance_frontiers(G, 0) == {0: set()}
G.add_edge(0, 0)
assert nx.dominance_frontiers(G, 0) == {0: set()}
def test_path(self):
n = 5
G = nx.path_graph(n, create_using=nx.DiGraph())
assert (nx.dominance_frontiers(G, 0) ==
{i: set() for i in range(n)})
def test_cycle(self):
n = 5
G = nx.cycle_graph(n, create_using=nx.DiGraph())
assert (nx.dominance_frontiers(G, 0) ==
{i: set() for i in range(n)})
def test_unreachable(self):
n = 5
assert n > 1
G = nx.path_graph(n, create_using=nx.DiGraph())
assert (nx.dominance_frontiers(G, n // 2) ==
{i: set() for i in range(n // 2, n)})
def test_irreducible1(self):
# Graph taken from Figure 2 of
# K. D. Cooper, T. J. Harvey, and K. Kennedy.
# A simple, fast dominance algorithm.
# Software Practice & Experience, 4:110, 2001.
edges = [(1, 2), (2, 1), (3, 2), (4, 1), (5, 3), (5, 4)]
G = nx.DiGraph(edges)
assert ({u: df
for u, df in nx.dominance_frontiers(G, 5).items()} ==
{1: set([2]), 2: set([1]), 3: set([2]),
4: set([1]), 5: set()})
def test_irreducible2(self):
# Graph taken from Figure 4 of
# K. D. Cooper, T. J. Harvey, and K. Kennedy.
# A simple, fast dominance algorithm.
# Software Practice & Experience, 4:110, 2001.
edges = [(1, 2), (2, 1), (2, 3), (3, 2), (4, 2), (4, 3), (5, 1),
(6, 4), (6, 5)]
G = nx.DiGraph(edges)
assert (nx.dominance_frontiers(G, 6) ==
{1: set([2]), 2: set([1, 3]), 3: set([2]), 4: set([2, 3]), 5: set([1]), 6: set([])})
def test_domrel_png(self):
# Graph taken from https://commons.wikipedia.org/wiki/File:Domrel.png
edges = [(1, 2), (2, 3), (2, 4), (2, 6), (3, 5), (4, 5), (5, 2)]
G = nx.DiGraph(edges)
assert (nx.dominance_frontiers(G, 1) ==
{1: set([]), 2: set([2]), 3: set([5]), 4: set([5]),
5: set([2]), 6: set()})
# Test postdominance.
with nx.utils.reversed(G):
assert (nx.dominance_frontiers(G, 6) ==
{1: set(), 2: set([2]), 3: set([2]), 4: set([2]),
5: set([2]), 6: set()})
def test_boost_example(self):
# Graph taken from Figure 1 of
# http://www.boost.org/doc/libs/1_56_0/libs/graph/doc/lengauer_tarjan_dominator.htm
edges = [(0, 1), (1, 2), (1, 3), (2, 7), (3, 4), (4, 5), (4, 6),
(5, 7), (6, 4)]
G = nx.DiGraph(edges)
assert (nx.dominance_frontiers(G, 0) ==
{0: set(), 1: set(), 2: set([7]), 3: set([7]),
4: set([4, 7]), 5: set([7]), 6: set([4]), 7: set()})
# Test postdominance.
with nx.utils.reversed(G):
assert (nx.dominance_frontiers(G, 7) ==
{0: set(), 1: set(), 2: set([1]), 3: set([1]),
4: set([1, 4]), 5: set([1]), 6: set([4]), 7: set()})
def test_discard_issue(self):
# https://github.com/networkx/networkx/issues/2071
g = nx.DiGraph()
g.add_edges_from([
('b0', 'b1'),
('b1', 'b2'),
('b2', 'b3'),
('b3', 'b1'),
('b1', 'b5'),
('b5', 'b6'),
('b5', 'b8'),
('b6', 'b7'),
('b8', 'b7'),
('b7', 'b3'),
('b3', 'b4')
]
)
df = nx.dominance_frontiers(g, 'b0')
assert df == {'b4': set(), 'b5': set(['b3']), 'b6': set(['b7']),
'b7': set(['b3']),
'b0': set(), 'b1': set(['b1']), 'b2': set(['b3']),
'b3': set(['b1']), 'b8': set(['b7'])}
def test_loop(self):
g = nx.DiGraph()
g.add_edges_from([('a', 'b'), ('b', 'c'), ('b', 'a')])
df = nx.dominance_frontiers(g, 'a')
assert df == {'a': set(), 'b': set(), 'c': set()}
def test_missing_immediate_doms(self):
# see https://github.com/networkx/networkx/issues/2070
g = nx.DiGraph()
edges = [
('entry_1', 'b1'),
('b1', 'b2'),
('b2', 'b3'),
('b3', 'exit'),
('entry_2', 'b3')
]
# entry_1
# |
# b1
# |
# b2 entry_2
# | /
# b3
# |
# exit
g.add_edges_from(edges)
# formerly raised KeyError on entry_2 when parsing b3
# because entry_2 does not have immediate doms (no path)
nx.dominance_frontiers(g, 'entry_1')
def test_loops_larger(self):
# from
# http://ecee.colorado.edu/~waite/Darmstadt/motion.html
g = nx.DiGraph()
edges = [
('entry', 'exit'),
('entry', '1'),
('1', '2'),
('2', '3'),
('3', '4'),
('4', '5'),
('5', '6'),
('6', 'exit'),
('6', '2'),
('5', '3'),
('4', '4')
]
g.add_edges_from(edges)
df = nx.dominance_frontiers(g, 'entry')
answer = {'entry': set(),
'1': set(['exit']),
'2': set(['exit', '2']),
'3': set(['exit', '3', '2']),
'4': set(['exit', '4', '3', '2']),
'5': set(['exit', '3', '2']),
'6': set(['exit', '2']),
'exit': set()}
for n in df:
assert set(df[n]) == set(answer[n])