This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

342 lines
12 KiB
Python

import pytest
import networkx as nx
from networkx.algorithms.planarity import get_counterexample
from networkx.algorithms.planarity import get_counterexample_recursive
from networkx.algorithms.planarity import check_planarity_recursive
class TestLRPlanarity:
"""Nose Unit tests for the :mod:`networkx.algorithms.planarity` module.
Tests three things:
1. Check that the result is correct
(returns planar if and only if the graph is actually planar)
2. In case a counter example is returned: Check if it is correct
3. In case an embedding is returned: Check if its actually an embedding
"""
@staticmethod
def check_graph(G, is_planar=None):
"""Raises an exception if the lr_planarity check returns a wrong result
Parameters
----------
G : NetworkX graph
is_planar : bool
The expected result of the planarity check.
If set to None only counter example or embedding are verified.
"""
# obtain results of planarity check
is_planar_lr, result = nx.check_planarity(G, True)
is_planar_lr_rec, result_rec = check_planarity_recursive(G, True)
if is_planar is not None:
# set a message for the assert
if is_planar:
msg = "Wrong planarity check result. Should be planar."
else:
msg = "Wrong planarity check result. Should be non-planar."
# check if the result is as expected
assert is_planar == is_planar_lr, msg
assert is_planar == is_planar_lr_rec, msg
if is_planar_lr:
# check embedding
check_embedding(G, result)
check_embedding(G, result_rec)
else:
# check counter example
check_counterexample(G, result)
check_counterexample(G, result_rec)
def test_simple_planar_graph(self):
e = [(1, 2), (2, 3), (3, 4), (4, 6), (6, 7), (7, 1), (1, 5),
(5, 2), (2, 4), (4, 5), (5, 7)]
self.check_graph(nx.Graph(e), is_planar=True)
def test_planar_with_selfloop(self):
e = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 3),
(1, 5), (2, 5), (2, 4), (3, 4), (3, 5), (4, 5)]
self.check_graph(nx.Graph(e), is_planar=True)
def test_k3_3(self):
self.check_graph(nx.complete_bipartite_graph(3, 3), is_planar=False)
def test_k5(self):
self.check_graph(nx.complete_graph(5), is_planar=False)
def test_multiple_components_planar(self):
e = [(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)]
self.check_graph(nx.Graph(e), is_planar=True)
def test_multiple_components_non_planar(self):
G = nx.complete_graph(5)
# add another planar component to the non planar component
# G stays non planar
G.add_edges_from([(6, 7), (7, 8), (8, 6)])
self.check_graph(G, is_planar=False)
def test_non_planar_with_selfloop(self):
G = nx.complete_graph(5)
# add self loops
for i in range(5):
G.add_edge(i, i)
self.check_graph(G, is_planar=False)
def test_non_planar1(self):
# tests a graph that has no subgraph directly isomorph to K5 or K3_3
e = [(1, 5), (1, 6), (1, 7), (2, 6), (2, 3), (3, 5), (3, 7), (4, 5),
(4, 6), (4, 7)]
self.check_graph(nx.Graph(e), is_planar=False)
def test_loop(self):
# test a graph with a selfloop
e = [(1, 2), (2, 2)]
G = nx.Graph(e)
self.check_graph(G, is_planar=True)
def test_comp(self):
# test multiple component graph
e = [(1, 2), (3, 4)]
G = nx.Graph(e)
G.remove_edge(1, 2)
self.check_graph(G, is_planar=True)
def test_goldner_harary(self):
# test goldner-harary graph (a maximal planar graph)
e = [
(1, 2), (1, 3), (1, 4), (1, 5), (1, 7), (1, 8), (1, 10),
(1, 11), (2, 3), (2, 4), (2, 6), (2, 7), (2, 9), (2, 10),
(2, 11), (3, 4), (4, 5), (4, 6), (4, 7), (5, 7), (6, 7),
(7, 8), (7, 9), (7, 10), (8, 10), (9, 10), (10, 11)
]
G = nx.Graph(e)
self.check_graph(G, is_planar=True)
def test_planar_multigraph(self):
G = nx.MultiGraph([(1, 2), (1, 2), (1, 2), (1, 2), (2, 3), (3, 1)])
self.check_graph(G, is_planar=True)
def test_non_planar_multigraph(self):
G = nx.MultiGraph(nx.complete_graph(5))
G.add_edges_from([(1, 2)]*5)
self.check_graph(G, is_planar=False)
def test_planar_digraph(self):
G = nx.DiGraph([
(1, 2), (2, 3), (2, 4), (4, 1), (4, 2), (1, 4), (3, 2)
])
self.check_graph(G, is_planar=True)
def test_non_planar_digraph(self):
G = nx.DiGraph(nx.complete_graph(5))
G.remove_edge(1, 2)
G.remove_edge(4, 1)
self.check_graph(G, is_planar=False)
def test_single_component(self):
# Test a graph with only a single node
G = nx.Graph()
G.add_node(1)
self.check_graph(G, is_planar=True)
def test_graph1(self):
G = nx.OrderedGraph([
(3, 10), (2, 13), (1, 13), (7, 11), (0, 8), (8, 13), (0, 2),
(0, 7), (0, 10), (1, 7)
])
self.check_graph(G, is_planar=True)
def test_graph2(self):
G = nx.OrderedGraph([
(1, 2), (4, 13), (0, 13), (4, 5), (7, 10), (1, 7), (0, 3), (2, 6),
(5, 6), (7, 13), (4, 8), (0, 8), (0, 9), (2, 13), (6, 7), (3, 6),
(2, 8)
])
self.check_graph(G, is_planar=False)
def test_graph3(self):
G = nx.OrderedGraph([
(0, 7), (3, 11), (3, 4), (8, 9), (4, 11), (1, 7), (1, 13), (1, 11),
(3, 5), (5, 7), (1, 3), (0, 4), (5, 11), (5, 13)
])
self.check_graph(G, is_planar=False)
def test_counterexample_planar(self):
with pytest.raises(nx.NetworkXException):
# Try to get a counterexample of a planar graph
G = nx.Graph()
G.add_node(1)
get_counterexample(G)
def test_counterexample_planar_recursive(self):
with pytest.raises(nx.NetworkXException):
# Try to get a counterexample of a planar graph
G = nx.Graph()
G.add_node(1)
get_counterexample_recursive(G)
def check_embedding(G, embedding):
"""Raises an exception if the combinatorial embedding is not correct
Parameters
----------
G : NetworkX graph
embedding : a dict mapping nodes to a list of edges
This specifies the ordering of the outgoing edges from a node for
a combinatorial embedding
Notes
-----
Checks the following things:
- The type of the embedding is correct
- The nodes and edges match the original graph
- Every half edge has its matching opposite half edge
- No intersections of edges (checked by Euler's formula)
"""
if not isinstance(embedding, nx.PlanarEmbedding):
raise nx.NetworkXException(
"Bad embedding. Not of type nx.PlanarEmbedding")
# Check structure
embedding.check_structure()
# Check that graphs are equivalent
assert set(G.nodes) == set(embedding.nodes), "Bad embedding. Nodes don't match the original graph."
# Check that the edges are equal
g_edges = set()
for edge in G.edges:
if edge[0] != edge[1]:
g_edges.add((edge[0], edge[1]))
g_edges.add((edge[1], edge[0]))
assert g_edges == set(embedding.edges), "Bad embedding. Edges don't match the original graph."
def check_counterexample(G, sub_graph):
"""Raises an exception if the counterexample is wrong.
Parameters
----------
G : NetworkX graph
subdivision_nodes : set
A set of nodes inducing a subgraph as a counterexample
"""
# 1. Create the sub graph
sub_graph = nx.Graph(sub_graph)
# 2. Remove self loops
for u in sub_graph:
if sub_graph.has_edge(u, u):
sub_graph.remove_edge(u, u)
# keep track of nodes we might need to contract
contract = list(sub_graph)
# 3. Contract Edges
while len(contract) > 0:
contract_node = contract.pop()
if contract_node not in sub_graph:
# Node was already contracted
continue
degree = sub_graph.degree[contract_node]
# Check if we can remove the node
if degree == 2:
# Get the two neighbors
neighbors = iter(sub_graph[contract_node])
u = next(neighbors)
v = next(neighbors)
# Save nodes for later
contract.append(u)
contract.append(v)
# Contract edge
sub_graph.remove_node(contract_node)
sub_graph.add_edge(u, v)
# 4. Check for isomorphism with K5 or K3_3 graphs
if len(sub_graph) == 5:
if not nx.is_isomorphic(nx.complete_graph(5), sub_graph):
raise nx.NetworkXException("Bad counter example.")
elif len(sub_graph) == 6:
if not nx.is_isomorphic(nx.complete_bipartite_graph(3, 3), sub_graph):
raise nx.NetworkXException("Bad counter example.")
else:
raise nx.NetworkXException("Bad counter example.")
class TestPlanarEmbeddingClass:
def test_get_data(self):
embedding = self.get_star_embedding(3)
data = embedding.get_data()
data_cmp = {0: [2, 1], 1: [0], 2: [0]}
assert data == data_cmp
def test_missing_edge_orientation(self):
with pytest.raises(nx.NetworkXException):
embedding = nx.PlanarEmbedding()
embedding.add_edge(1, 2)
embedding.add_edge(2, 1)
# Invalid structure because the orientation of the edge was not set
embedding.check_structure()
def test_invalid_edge_orientation(self):
with pytest.raises(nx.NetworkXException):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge_first(1, 2)
embedding.add_half_edge_first(2, 1)
embedding.add_edge(1, 3)
embedding.check_structure()
def test_missing_half_edge(self):
with pytest.raises(nx.NetworkXException):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge_first(1, 2)
# Invalid structure because other half edge is missing
embedding.check_structure()
def test_not_fulfilling_euler_formula(self):
with pytest.raises(nx.NetworkXException):
embedding = nx.PlanarEmbedding()
for i in range(5):
for j in range(5):
if i != j:
embedding.add_half_edge_first(i, j)
embedding.check_structure()
def test_missing_reference(self):
with pytest.raises(nx.NetworkXException):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge_cw(1, 2, 3)
def test_connect_components(self):
embedding = nx.PlanarEmbedding()
embedding.connect_components(1, 2)
def test_successful_face_traversal(self):
embedding = nx.PlanarEmbedding()
embedding.add_half_edge_first(1, 2)
embedding.add_half_edge_first(2, 1)
face = embedding.traverse_face(1, 2)
assert face == [1, 2]
def test_unsuccessful_face_traversal(self):
with pytest.raises(nx.NetworkXException):
embedding = nx.PlanarEmbedding()
embedding.add_edge(1, 2, ccw=2, cw=3)
embedding.add_edge(2, 1, ccw=1, cw=3)
embedding.traverse_face(1, 2)
@staticmethod
def get_star_embedding(n):
embedding = nx.PlanarEmbedding()
for i in range(1, n):
embedding.add_half_edge_first(0, i)
embedding.add_half_edge_first(i, 0)
return embedding