This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/networkx/algorithms/tests/test_chains.py
2020-07-30 01:16:18 +02:00

133 lines
4.2 KiB
Python

# test_chains.py - unit tests for the chains module
#
# Copyright 2004-2019 NetworkX developers.
#
# This file is part of NetworkX.
#
# NetworkX is distributed under a BSD license; see LICENSE.txt for more
# information.
"""Unit tests for the chain decomposition functions."""
from itertools import cycle
from itertools import islice
from unittest import TestCase
import networkx as nx
def cycles(seq):
"""Yields cyclic permutations of the given sequence.
For example::
>>> list(cycles('abc'))
[('a', 'b', 'c'), ('b', 'c', 'a'), ('c', 'a', 'b')]
"""
n = len(seq)
cycled_seq = cycle(seq)
for x in seq:
yield tuple(islice(cycled_seq, n))
next(cycled_seq)
def cyclic_equals(seq1, seq2):
"""Decide whether two sequences are equal up to cyclic permutations.
For example::
>>> cyclic_equals('xyz', 'zxy')
True
>>> cyclic_equals('xyz', 'zyx')
False
"""
# Cast seq2 to a tuple since `cycles()` yields tuples.
seq2 = tuple(seq2)
return any(x == tuple(seq2) for x in cycles(seq1))
class TestChainDecomposition(TestCase):
"""Unit tests for the chain decomposition function."""
def assertContainsChain(self, chain, expected):
# A cycle could be expressed in two different orientations, one
# forward and one backward, so we need to check for cyclic
# equality in both orientations.
reversed_chain = list(reversed([tuple(reversed(e)) for e in chain]))
for candidate in expected:
if cyclic_equals(chain, candidate):
break
if cyclic_equals(reversed_chain, candidate):
break
else:
self.fail('chain not found')
def test_decomposition(self):
edges = [
# DFS tree edges.
(1, 2), (2, 3), (3, 4), (3, 5), (5, 6), (6, 7), (7, 8), (5, 9),
(9, 10),
# Nontree edges.
(1, 3), (1, 4), (2, 5), (5, 10), (6, 8)
]
G = nx.Graph(edges)
expected = [
[(1, 3), (3, 2), (2, 1)],
[(1, 4), (4, 3)],
[(2, 5), (5, 3)],
[(5, 10), (10, 9), (9, 5)],
[(6, 8), (8, 7), (7, 6)],
]
chains = list(nx.chain_decomposition(G, root=1))
self.assertEqual(len(chains), len(expected))
# This chain decomposition isn't unique
# for chain in chains:
# print(chain)
# self.assertContainsChain(chain, expected)
def test_barbell_graph(self):
# The (3, 0) barbell graph has two triangles joined by a single edge.
G = nx.barbell_graph(3, 0)
chains = list(nx.chain_decomposition(G, root=0))
expected = [
[(0, 1), (1, 2), (2, 0)],
[(3, 4), (4, 5), (5, 3)],
]
self.assertEqual(len(chains), len(expected))
for chain in chains:
self.assertContainsChain(chain, expected)
def test_disconnected_graph(self):
"""Test for a graph with multiple connected components."""
G = nx.barbell_graph(3, 0)
H = nx.barbell_graph(3, 0)
mapping = dict(zip(range(6), 'abcdef'))
nx.relabel_nodes(H, mapping, copy=False)
G = nx.union(G, H)
chains = list(nx.chain_decomposition(G))
expected = [
[(0, 1), (1, 2), (2, 0)],
[(3, 4), (4, 5), (5, 3)],
[('a', 'b'), ('b', 'c'), ('c', 'a')],
[('d', 'e'), ('e', 'f'), ('f', 'd')],
]
self.assertEqual(len(chains), len(expected))
for chain in chains:
self.assertContainsChain(chain, expected)
def test_disconnected_graph_root_node(self):
"""Test for a single component of a disconnected graph."""
G = nx.barbell_graph(3, 0)
H = nx.barbell_graph(3, 0)
mapping = dict(zip(range(6), 'abcdef'))
nx.relabel_nodes(H, mapping, copy=False)
G = nx.union(G, H)
chains = list(nx.chain_decomposition(G, root='a'))
expected = [
[('a', 'b'), ('b', 'c'), ('c', 'a')],
[('d', 'e'), ('e', 'f'), ('f', 'd')],
]
self.assertEqual(len(chains), len(expected))
for chain in chains:
self.assertContainsChain(chain, expected)