This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

274 lines
10 KiB
Python

#!/usr/bin/env python
import networkx as nx
class TestTriangles:
def test_empty(self):
G = nx.Graph()
assert list(nx.triangles(G).values()) == []
def test_path(self):
G = nx.path_graph(10)
assert (list(nx.triangles(G).values()) ==
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
assert (nx.triangles(G) ==
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0,
5: 0, 6: 0, 7: 0, 8: 0, 9: 0})
def test_cubical(self):
G = nx.cubical_graph()
assert (list(nx.triangles(G).values()) ==
[0, 0, 0, 0, 0, 0, 0, 0])
assert nx.triangles(G, 1) == 0
assert list(nx.triangles(G, [1, 2]).values()) == [0, 0]
assert nx.triangles(G, 1) == 0
assert nx.triangles(G, [1, 2]) == {1: 0, 2: 0}
def test_k5(self):
G = nx.complete_graph(5)
assert list(nx.triangles(G).values()) == [6, 6, 6, 6, 6]
assert sum(nx.triangles(G).values()) / 3.0 == 10
assert nx.triangles(G, 1) == 6
G.remove_edge(1, 2)
assert list(nx.triangles(G).values()) == [5, 3, 3, 5, 5]
assert nx.triangles(G, 1) == 3
class TestDirectedClustering:
def test_clustering(self):
G = nx.DiGraph()
assert list(nx.clustering(G).values()) == []
assert nx.clustering(G) == {}
def test_path(self):
G = nx.path_graph(10, create_using=nx.DiGraph())
assert (list(nx.clustering(G).values()) ==
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert (nx.clustering(G) ==
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0,
5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0})
def test_k5(self):
G = nx.complete_graph(5, create_using=nx.DiGraph())
assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1]
assert nx.average_clustering(G) == 1
G.remove_edge(1, 2)
assert (list(nx.clustering(G).values()) ==
[11. / 12., 1.0, 1.0, 11. / 12., 11. / 12.])
assert nx.clustering(G, [1, 4]) == {1: 1.0, 4: 11. /12.}
G.remove_edge(2, 1)
assert (list(nx.clustering(G).values()) ==
[5. / 6., 1.0, 1.0, 5. / 6., 5. / 6.])
assert nx.clustering(G, [1, 4]) == {1: 1.0, 4: 0.83333333333333337}
def test_triangle_and_edge(self):
G = nx.cycle_graph(3, create_using=nx.DiGraph())
G.add_edge(0, 4)
assert nx.clustering(G)[0] == 1.0 / 6.0
class TestDirectedWeightedClustering:
def test_clustering(self):
G = nx.DiGraph()
assert list(nx.clustering(G, weight='weight').values()) == []
assert nx.clustering(G) == {}
def test_path(self):
G = nx.path_graph(10, create_using=nx.DiGraph())
assert (list(nx.clustering(G, weight='weight').values()) ==
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert (nx.clustering(G, weight='weight') ==
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0,
5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0})
def test_k5(self):
G = nx.complete_graph(5, create_using=nx.DiGraph())
assert list(nx.clustering(G, weight='weight').values()) == [1, 1, 1, 1, 1]
assert nx.average_clustering(G, weight='weight') == 1
G.remove_edge(1, 2)
assert (list(nx.clustering(G, weight='weight').values()) ==
[11. / 12., 1.0, 1.0, 11. / 12., 11. / 12.])
assert nx.clustering(G, [1, 4], weight='weight') == {1: 1.0, 4: 11. /12.}
G.remove_edge(2, 1)
assert (list(nx.clustering(G, weight='weight').values()) ==
[5. / 6., 1.0, 1.0, 5. / 6., 5. / 6.])
assert nx.clustering(G, [1, 4], weight='weight') == {1: 1.0, 4: 0.83333333333333337}
def test_triangle_and_edge(self):
G = nx.cycle_graph(3, create_using=nx.DiGraph())
G.add_edge(0, 4, weight=2)
assert nx.clustering(G)[0] == 1.0 / 6.0
assert nx.clustering(G, weight='weight')[0] == 1.0 / 12.0
class TestWeightedClustering:
def test_clustering(self):
G = nx.Graph()
assert list(nx.clustering(G, weight='weight').values()) == []
assert nx.clustering(G) == {}
def test_path(self):
G = nx.path_graph(10)
assert (list(nx.clustering(G, weight='weight').values()) ==
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert (nx.clustering(G, weight='weight') ==
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0,
5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0})
def test_cubical(self):
G = nx.cubical_graph()
assert (list(nx.clustering(G, weight='weight').values()) ==
[0, 0, 0, 0, 0, 0, 0, 0])
assert nx.clustering(G, 1) == 0
assert list(nx.clustering(G, [1, 2], weight='weight').values()) == [0, 0]
assert nx.clustering(G, 1, weight='weight') == 0
assert nx.clustering(G, [1, 2], weight='weight') == {1: 0, 2: 0}
def test_k5(self):
G = nx.complete_graph(5)
assert list(nx.clustering(G, weight='weight').values()) == [1, 1, 1, 1, 1]
assert nx.average_clustering(G, weight='weight') == 1
G.remove_edge(1, 2)
assert (list(nx.clustering(G, weight='weight').values()) ==
[5. / 6., 1.0, 1.0, 5. / 6., 5. / 6.])
assert nx.clustering(G, [1, 4], weight='weight') == {1: 1.0, 4: 0.83333333333333337}
def test_triangle_and_edge(self):
G = nx.cycle_graph(3)
G.add_edge(0, 4, weight=2)
assert nx.clustering(G)[0] == 1.0 / 3.0
assert nx.clustering(G, weight='weight')[0] == 1.0 / 6.0
class TestClustering:
def test_clustering(self):
G = nx.Graph()
assert list(nx.clustering(G).values()) == []
assert nx.clustering(G) == {}
def test_path(self):
G = nx.path_graph(10)
assert (list(nx.clustering(G).values()) ==
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert (nx.clustering(G) ==
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0,
5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0})
def test_cubical(self):
G = nx.cubical_graph()
assert (list(nx.clustering(G).values()) ==
[0, 0, 0, 0, 0, 0, 0, 0])
assert nx.clustering(G, 1) == 0
assert list(nx.clustering(G, [1, 2]).values()) == [0, 0]
assert nx.clustering(G, 1) == 0
assert nx.clustering(G, [1, 2]) == {1: 0, 2: 0}
def test_k5(self):
G = nx.complete_graph(5)
assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1]
assert nx.average_clustering(G) == 1
G.remove_edge(1, 2)
assert (list(nx.clustering(G).values()) ==
[5. / 6., 1.0, 1.0, 5. / 6., 5. / 6.])
assert nx.clustering(G, [1, 4]) == {1: 1.0, 4: 0.83333333333333337}
class TestTransitivity:
def test_transitivity(self):
G = nx.Graph()
assert nx.transitivity(G) == 0.0
def test_path(self):
G = nx.path_graph(10)
assert nx.transitivity(G) == 0.0
def test_cubical(self):
G = nx.cubical_graph()
assert nx.transitivity(G) == 0.0
def test_k5(self):
G = nx.complete_graph(5)
assert nx.transitivity(G) == 1.0
G.remove_edge(1, 2)
assert nx.transitivity(G) == 0.875
class TestSquareClustering:
def test_clustering(self):
G = nx.Graph()
assert list(nx.square_clustering(G).values()) == []
assert nx.square_clustering(G) == {}
def test_path(self):
G = nx.path_graph(10)
assert (list(nx.square_clustering(G).values()) ==
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert (nx.square_clustering(G) ==
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0,
5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0})
def test_cubical(self):
G = nx.cubical_graph()
assert (list(nx.square_clustering(G).values()) ==
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
assert list(nx.square_clustering(G, [1, 2]).values()) == [0.5, 0.5]
assert nx.square_clustering(G, [1])[1] == 0.5
assert nx.square_clustering(G, [1, 2]) == {1: 0.5, 2: 0.5}
def test_k5(self):
G = nx.complete_graph(5)
assert list(nx.square_clustering(G).values()) == [1, 1, 1, 1, 1]
def test_bipartite_k5(self):
G = nx.complete_bipartite_graph(5, 5)
assert (list(nx.square_clustering(G).values()) ==
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
def test_lind_square_clustering(self):
"""Test C4 for figure 1 Lind et al (2005)"""
G = nx.Graph([(1, 2), (1, 3), (1, 6), (1, 7), (2, 4), (2, 5),
(3, 4), (3, 5), (6, 7), (7, 8), (6, 8), (7, 9),
(7, 10), (6, 11), (6, 12), (2, 13), (2, 14), (3, 15), (3, 16)])
G1 = G.subgraph([1, 2, 3, 4, 5, 13, 14, 15, 16])
G2 = G.subgraph([1, 6, 7, 8, 9, 10, 11, 12])
assert nx.square_clustering(G, [1])[1] == 3 / 75.0
assert nx.square_clustering(G1, [1])[1] == 2 / 6.0
assert nx.square_clustering(G2, [1])[1] == 1 / 5.0
def test_average_clustering():
G = nx.cycle_graph(3)
G.add_edge(2, 3)
assert nx.average_clustering(G) == (1 + 1 + 1 / 3.0) / 4.0
assert nx.average_clustering(G, count_zeros=True) == (1 + 1 + 1 / 3.0) / 4.0
assert nx.average_clustering(G, count_zeros=False) == (1 + 1 + 1 / 3.0) / 3.0
class TestGeneralizedDegree:
def test_generalized_degree(self):
G = nx.Graph()
assert nx.generalized_degree(G) == {}
def test_path(self):
G = nx.path_graph(5)
assert nx.generalized_degree(G, 0) == {0: 1}
assert nx.generalized_degree(G, 1) == {0: 2}
def test_cubical(self):
G = nx.cubical_graph()
assert nx.generalized_degree(G, 0) == {0: 3}
def test_k5(self):
G = nx.complete_graph(5)
assert nx.generalized_degree(G, 0) == {3: 4}
G.remove_edge(0, 1)
assert nx.generalized_degree(G, 0) == {2: 3}