This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
2020-07-30 01:16:18 +02:00

35 lines
1.3 KiB
Python

import pytest
numpy = pytest.importorskip('numpy')
npt = pytest.importorskip('numpy.testing')
scipy = pytest.importorskip('scipy')
import networkx as nx
from networkx.generators.degree_seq import havel_hakimi_graph
class TestBetheHessian(object):
@classmethod
def setup_class(cls):
deg = [3, 2, 2, 1, 0]
cls.G = havel_hakimi_graph(deg)
cls.P = nx.path_graph(3)
def test_bethe_hessian(self):
"Bethe Hessian matrix"
H = numpy.array([[ 4, -2, 0],
[-2, 5, -2],
[ 0, -2, 4]])
permutation = [2, 0, 1]
# Bethe Hessian gives expected form
npt.assert_equal(nx.bethe_hessian_matrix(self.P, r=2).todense(), H)
# nodelist is correctly implemented
npt.assert_equal(nx.bethe_hessian_matrix(self.P, r=2, nodelist=permutation).todense(),
H[numpy.ix_(permutation, permutation)])
# Equal to Laplacian matrix when r=1
npt.assert_equal(nx.bethe_hessian_matrix(self.G, r=1).todense(),
nx.laplacian_matrix(self.G).todense())
# Correct default for the regularizer r
npt.assert_equal(nx.bethe_hessian_matrix(self.G).todense(),
nx.bethe_hessian_matrix(self.G, r=1.25).todense())