447 lines
14 KiB
Python
447 lines
14 KiB
Python
# Copyright (C) 2019 by
|
|
# Luca Baldesi
|
|
# BSD license.
|
|
#
|
|
# Author: Luca Baldesi (baldo.plus@gmail.com)
|
|
"""Generates graphs resembling the Internet Autonomous System network"""
|
|
|
|
import networkx as nx
|
|
from networkx.utils import py_random_state
|
|
|
|
__all__ = ['random_internet_as_graph']
|
|
|
|
|
|
def uniform_int_from_avg(a, m, seed):
|
|
""" Pick a random integer with uniform probability.
|
|
|
|
Returns a random integer uniformly taken from a distribution with
|
|
minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where
|
|
b = 2*m - a.
|
|
|
|
Notes
|
|
-----
|
|
p = (b-floor(b))/2
|
|
X = X1 + X2; X1~U(a,floor(b)), X2~B(p)
|
|
E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m
|
|
"""
|
|
|
|
from math import floor
|
|
assert(m >= a)
|
|
b = 2*m - a
|
|
p = (b-floor(b))/2
|
|
X1 = int(round(seed.random()*(floor(b)-a) + a))
|
|
if seed.random() < p:
|
|
X2 = 1
|
|
else:
|
|
X2 = 0
|
|
return X1 + X2
|
|
|
|
|
|
def choose_pref_attach(degs, seed):
|
|
""" Pick a random value, with a probability given by its weight.
|
|
|
|
Returns a random choice among degs keys, each of which has a
|
|
probability proportional to the corresponding dictionary value.
|
|
|
|
Parameters
|
|
----------
|
|
degs: dictionary
|
|
It contains the possible values (keys) and the corresponding
|
|
probabilities (values)
|
|
seed: random state
|
|
|
|
Returns
|
|
-------
|
|
v: object
|
|
A key of degs or None if degs is empty
|
|
"""
|
|
|
|
if len(degs) == 0:
|
|
return None
|
|
s = sum(degs.values())
|
|
if s == 0:
|
|
return seed.choice(list(degs.keys()))
|
|
v = seed.random() * s
|
|
|
|
nodes = list(degs.keys())
|
|
i = 0
|
|
acc = degs[nodes[i]]
|
|
while v > acc:
|
|
i += 1
|
|
acc += degs[nodes[i]]
|
|
return nodes[i]
|
|
|
|
|
|
class AS_graph_generator(object):
|
|
""" Generates random internet AS graphs.
|
|
"""
|
|
|
|
def __init__(self, n, seed):
|
|
""" Initializes variables. Immediate numbers are taken from [1].
|
|
|
|
Parameters
|
|
----------
|
|
n: integer
|
|
Number of graph nodes
|
|
seed: random state
|
|
Indicator of random number generation state.
|
|
See :ref:`Randomness<randomness>`.
|
|
|
|
Returns
|
|
-------
|
|
GG: AS_graph_generator object
|
|
|
|
References
|
|
----------
|
|
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
|
|
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
|
|
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
|
|
"""
|
|
|
|
self.seed = seed
|
|
self.n_t = min(n, int(round(self.seed.random()*2+4))) # num of T nodes
|
|
self.n_m = int(round(0.15*n)) # number of M nodes
|
|
self.n_cp = int(round(0.05*n)) # number of CP nodes
|
|
self.n_c = max(0, n-self.n_t-self.n_m-self.n_cp) # number of C nodes
|
|
|
|
self.d_m = 2 + (2.5*n)/10000 # average multihoming degree for M nodes
|
|
self.d_cp = 2 + (1.5*n)/10000 # avg multihoming degree for CP nodes
|
|
self.d_c = 1 + (5*n)/100000 # average multihoming degree for C nodes
|
|
|
|
self.p_m_m = 1 + (2*n)/10000 # avg num of peer edges between M and M
|
|
self.p_cp_m = 0.2 + (2*n)/10000 # avg num of peer edges between CP, M
|
|
self.p_cp_cp = 0.05 + (2*n)/100000 # avg num of peer edges btwn CP, CP
|
|
|
|
self.t_m = 0.375 # probability M's provider is T
|
|
self.t_cp = 0.375 # probability CP's provider is T
|
|
self.t_c = 0.125 # probability C's provider is T
|
|
|
|
def t_graph(self):
|
|
""" Generates the core mesh network of tier one nodes of a AS graph.
|
|
|
|
Returns
|
|
-------
|
|
G: Networkx Graph
|
|
Core network
|
|
"""
|
|
|
|
self.G = nx.Graph()
|
|
for i in range(self.n_t):
|
|
self.G.add_node(i, type="T")
|
|
for r in self.regions:
|
|
self.regions[r].add(i)
|
|
for j in self.G.nodes():
|
|
if i != j:
|
|
self.add_edge(i, j, 'peer')
|
|
self.customers[i] = set([])
|
|
self.providers[i] = set([])
|
|
return self.G
|
|
|
|
def add_edge(self, i, j, kind):
|
|
if kind == 'transit':
|
|
customer = str(i)
|
|
else:
|
|
customer = 'none'
|
|
self.G.add_edge(i, j, type=kind, customer=customer)
|
|
|
|
def choose_peer_pref_attach(self, node_list):
|
|
""" Pick a node with a probability weighted by its peer degree.
|
|
|
|
Pick a node from node_list with preferential attachment
|
|
computed only on their peer degree
|
|
"""
|
|
|
|
d = {}
|
|
for n in node_list:
|
|
d[n] = self.G.nodes[n]['peers']
|
|
return choose_pref_attach(d, self.seed)
|
|
|
|
def choose_node_pref_attach(self, node_list):
|
|
""" Pick a node with a probability weighted by its degree.
|
|
|
|
Pick a node from node_list with preferential attachment
|
|
computed on their degree
|
|
"""
|
|
|
|
degs = dict(self.G.degree(node_list))
|
|
return choose_pref_attach(degs, self.seed)
|
|
|
|
def add_customer(self, i, j):
|
|
""" Keep the dictionaries 'customers' and 'providers' consistent.
|
|
"""
|
|
|
|
self.customers[j].add(i)
|
|
self.providers[i].add(j)
|
|
for z in self.providers[j]:
|
|
self.customers[z].add(i)
|
|
self.providers[i].add(z)
|
|
|
|
def add_node(self, i, kind, reg2prob, avg_deg, t_edge_prob):
|
|
""" Add a node and its customer transit edges to the graph.
|
|
|
|
Parameters
|
|
----------
|
|
i: object
|
|
Identifier of the new node
|
|
kind: string
|
|
Type of the new node. Options are: 'M' for middle node, 'CP' for
|
|
content provider and 'C' for customer.
|
|
reg2prob: float
|
|
Probability the new node can be in two different regions.
|
|
avg_deg: float
|
|
Average number of transit nodes of which node i is customer.
|
|
t_edge_prob: float
|
|
Probability node i establish a customer transit edge with a tier
|
|
one (T) node
|
|
|
|
Returns
|
|
-------
|
|
i: object
|
|
Identifier of the new node
|
|
"""
|
|
|
|
regs = 1 # regions in which node resides
|
|
if self.seed.random() < reg2prob: # node is in two regions
|
|
regs = 2
|
|
node_options = set()
|
|
|
|
self.G.add_node(i, type=kind, peers=0)
|
|
self.customers[i] = set()
|
|
self.providers[i] = set()
|
|
self.nodes[kind].add(i)
|
|
for r in self.seed.sample(list(self.regions), regs):
|
|
node_options = node_options.union(self.regions[r])
|
|
self.regions[r].add(i)
|
|
|
|
edge_num = uniform_int_from_avg(1, avg_deg, self.seed)
|
|
|
|
t_options = node_options.intersection(self.nodes['T'])
|
|
m_options = node_options.intersection(self.nodes['M'])
|
|
if i in m_options:
|
|
m_options.remove(i)
|
|
d = 0
|
|
while d < edge_num and (len(t_options) > 0 or len(m_options) > 0):
|
|
if len(m_options) == 0 or (len(t_options) > 0 and
|
|
self.seed.random() < t_edge_prob): # add edge to a T node
|
|
j = self.choose_node_pref_attach(t_options)
|
|
t_options.remove(j)
|
|
else:
|
|
j = self.choose_node_pref_attach(m_options)
|
|
m_options.remove(j)
|
|
self.add_edge(i, j, 'transit')
|
|
self.add_customer(i, j)
|
|
d += 1
|
|
|
|
return i
|
|
|
|
def add_m_peering_link(self, m, to_kind):
|
|
""" Add a peering link between two middle tier (M) nodes.
|
|
|
|
Target node j is drawn considering a preferential attachment based on
|
|
other M node peering degree.
|
|
|
|
Parameters
|
|
----------
|
|
m: object
|
|
Node identifier
|
|
to_kind: string
|
|
type for target node j (must be always M)
|
|
|
|
Returns
|
|
-------
|
|
success: boolean
|
|
"""
|
|
|
|
# candidates are of type 'M' and are not customers of m
|
|
node_options = self.nodes['M'].difference(self.customers[m])
|
|
# candidates are not providers of m
|
|
node_options = node_options.difference(self.providers[m])
|
|
# remove self
|
|
if m in node_options:
|
|
node_options.remove(m)
|
|
|
|
# remove candidates we are already connected to
|
|
for j in self.G.neighbors(m):
|
|
if j in node_options:
|
|
node_options.remove(j)
|
|
|
|
if len(node_options) > 0:
|
|
j = self.choose_peer_pref_attach(node_options)
|
|
self.add_edge(m, j, 'peer')
|
|
self.G.nodes[m]['peers'] += 1
|
|
self.G.nodes[j]['peers'] += 1
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def add_cp_peering_link(self, cp, to_kind):
|
|
""" Add a peering link to a content provider (CP) node.
|
|
|
|
Target node j can be CP or M and it is drawn uniformely among the nodes
|
|
belonging to the same region as cp.
|
|
|
|
Parameters
|
|
----------
|
|
cp: object
|
|
Node identifier
|
|
to_kind: string
|
|
type for target node j (must be M or CP)
|
|
|
|
Returns
|
|
-------
|
|
success: boolean
|
|
"""
|
|
|
|
node_options = set()
|
|
for r in self.regions: # options include nodes in the same region(s)
|
|
if cp in self.regions[r]:
|
|
node_options = node_options.union(self.regions[r])
|
|
|
|
# options are restricted to the indicated kind ('M' or 'CP')
|
|
node_options = self.nodes[to_kind].intersection(node_options)
|
|
|
|
# remove self
|
|
if cp in node_options:
|
|
node_options.remove(cp)
|
|
|
|
# remove nodes that are cp's providers
|
|
node_options = node_options.difference(self.providers[cp])
|
|
|
|
# remove nodes we are already connected to
|
|
for j in self.G.neighbors(cp):
|
|
if j in node_options:
|
|
node_options.remove(j)
|
|
|
|
if len(node_options) > 0:
|
|
j = self.seed.sample(node_options, 1)[0]
|
|
self.add_edge(cp, j, 'peer')
|
|
self.G.nodes[cp]['peers'] += 1
|
|
self.G.nodes[j]['peers'] += 1
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def graph_regions(self, rn):
|
|
""" Initializes AS network regions.
|
|
|
|
Parameters
|
|
----------
|
|
rn: integer
|
|
Number of regions
|
|
"""
|
|
|
|
self.regions = {}
|
|
for i in range(rn):
|
|
self.regions["REG"+str(i)] = set()
|
|
|
|
def add_peering_links(self, from_kind, to_kind):
|
|
""" Utility function to add peering links among node groups.
|
|
"""
|
|
peer_link_method = None
|
|
if from_kind == 'M':
|
|
peer_link_method = self.add_m_peering_link
|
|
m = self.p_m_m
|
|
if from_kind == 'CP':
|
|
peer_link_method = self.add_cp_peering_link
|
|
if to_kind == 'M':
|
|
m = self.p_cp_m
|
|
else:
|
|
m = self.p_cp_cp
|
|
|
|
for i in self.nodes[from_kind]:
|
|
num = uniform_int_from_avg(0, m, self.seed)
|
|
for _ in range(num):
|
|
peer_link_method(i, to_kind)
|
|
|
|
def generate(self):
|
|
""" Generates a random AS network graph as described in [1].
|
|
|
|
Returns
|
|
-------
|
|
G: Graph object
|
|
|
|
Notes
|
|
-----
|
|
The process steps are the following: first we create the core network
|
|
of tier one nodes, then we add the middle tier (M), the content
|
|
provider (CP) and the customer (C) nodes along with their transit edges
|
|
(link i,j means i is customer of j). Finally we add peering links
|
|
between M nodes, between M and CP nodes and between CP node couples.
|
|
For a detailed description of the algorithm, please refer to [1].
|
|
|
|
References
|
|
----------
|
|
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
|
|
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
|
|
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
|
|
"""
|
|
|
|
self.graph_regions(5)
|
|
self.customers = {}
|
|
self.providers = {}
|
|
self.nodes = {'T': set([]), 'M': set([]), 'CP': set([]), 'C': set([])}
|
|
|
|
self.t_graph()
|
|
self.nodes['T'] = set(list(self.G.nodes()))
|
|
|
|
i = len(self.nodes['T'])
|
|
for _ in range(self.n_m):
|
|
self.nodes['M'].add(self.add_node(i, 'M', 0.2, self.d_m, self.t_m))
|
|
i += 1
|
|
for _ in range(self.n_cp):
|
|
self.nodes['CP'].add(self.add_node(i, 'CP', 0.05, self.d_cp,
|
|
self.t_cp))
|
|
i += 1
|
|
for _ in range(self.n_c):
|
|
self.nodes['C'].add(self.add_node(i, 'C', 0, self.d_c, self.t_c))
|
|
i += 1
|
|
|
|
self.add_peering_links('M', 'M')
|
|
self.add_peering_links('CP', 'M')
|
|
self.add_peering_links('CP', 'CP')
|
|
|
|
return self.G
|
|
|
|
|
|
@py_random_state(1)
|
|
def random_internet_as_graph(n, seed=None):
|
|
""" Generates a random undirected graph resembling the Internet AS network
|
|
|
|
Parameters
|
|
----------
|
|
n: integer in [1000, 10000]
|
|
Number of graph nodes
|
|
seed : integer, random_state, or None (default)
|
|
Indicator of random number generation state.
|
|
See :ref:`Randomness<randomness>`.
|
|
|
|
Returns
|
|
-------
|
|
G: Networkx Graph object
|
|
A randomly generated undirected graph
|
|
|
|
Notes
|
|
-----
|
|
This algorithm returns an undirected graph resembling the Internet
|
|
Autonomous System (AS) network, it uses the approach by Elmokashfi et al.
|
|
[1] and it grants the properties described in the related paper [1].
|
|
|
|
Each node models an autonomous system, with an attribute 'type' specifying
|
|
its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP).
|
|
Each edge models an ADV communication link (hence, bidirectional) with
|
|
attributes:
|
|
- type: transit|peer, the kind of commercial agreement between nodes;
|
|
- customer: <node id>, the identifier of the node acting as customer
|
|
('none' if type is peer).
|
|
|
|
References
|
|
----------
|
|
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
|
|
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
|
|
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
|
|
"""
|
|
|
|
GG = AS_graph_generator(n, seed)
|
|
G = GG.generate()
|
|
return G
|