102 lines
3.6 KiB
Python
102 lines
3.6 KiB
Python
|
#! /usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
import numpy as np
|
||
|
|
||
|
from math import pi, sin, cos
|
||
|
|
||
|
from Path import Path
|
||
|
from Pattern import Pattern
|
||
|
|
||
|
|
||
|
# Select name of class, inherits from Pattern
|
||
|
# TODO:
|
||
|
# 1) Implement __init__ method to get all custom options and then call Pattern's __init__
|
||
|
# 2) Implement generate_path_tree to define all of the desired strokes
|
||
|
|
||
|
|
||
|
class PleatCircular(Pattern):
|
||
|
|
||
|
def __init__(self):
|
||
|
""" Constructor
|
||
|
"""
|
||
|
Pattern.__init__(self) # Must be called in order to parse common options
|
||
|
|
||
|
# save all custom parameters defined on .inx file
|
||
|
self.add_argument('--pattern', type=self.str, default='pleat_circular')
|
||
|
self.add_argument('--radius', type=self.float, default=55.0)
|
||
|
self.add_argument('--ratio', type=self.float, default=0.4)
|
||
|
self.add_argument('--rings', type=self.int, default=15)
|
||
|
self.add_argument('--sides', type=self.int, default=20)
|
||
|
|
||
|
def generate_path_tree(self):
|
||
|
""" Specialized path generation for your origami pattern
|
||
|
"""
|
||
|
# retrieve saved parameters
|
||
|
unit_factor = self.calc_unit_factor()
|
||
|
R = self.options.radius * unit_factor
|
||
|
ratio = self.options.ratio
|
||
|
r = R * ratio
|
||
|
rings = self.options.rings
|
||
|
dr = (1.-ratio)*R/rings
|
||
|
self.translate = (R, R)
|
||
|
|
||
|
if not self.options.simulation_mode:
|
||
|
inner_circles = []
|
||
|
for i in range(1, rings):
|
||
|
inner_circles.append(Path((0, 0), radius=r + i*dr, style='m' if i % 2 else 'v'))
|
||
|
|
||
|
edges = [Path((0, 0), radius=R, style='e'),
|
||
|
Path((0, 0), radius=r, style='e')]
|
||
|
|
||
|
self.path_tree = [inner_circles, edges]
|
||
|
|
||
|
# append semicreases for simulation
|
||
|
else:
|
||
|
sides = self.options.sides
|
||
|
dtheta = pi / sides
|
||
|
# create diagonals
|
||
|
diagonals = []
|
||
|
for i in range(sides):
|
||
|
p1 = (0, 0)
|
||
|
p2 = (R * cos((1 + i * 2) * dtheta), R * sin((1 + i * 2) * dtheta))
|
||
|
diagonals.append(Path([p1, p2], 'u'))
|
||
|
|
||
|
s = sin(dtheta)
|
||
|
c = cos(dtheta)
|
||
|
|
||
|
# Edge
|
||
|
paths = [Path([(c * R, -s * R), (R, 0), (c * R, s * R)], style='e'),
|
||
|
Path([(c * r, -s * r), (r, 0), (c * r, s * r)], style='e')]
|
||
|
|
||
|
# MV circles
|
||
|
for i in range(1, rings):
|
||
|
r_i = r + i * dr
|
||
|
paths.append(Path([(c * r_i, -s * r_i), (r_i, 0), (c * r_i, s * r_i)],
|
||
|
style='m' if i % 2 else 'v'))
|
||
|
|
||
|
# Semicreases
|
||
|
top = []
|
||
|
bottom = []
|
||
|
for i in range(rings + 1):
|
||
|
r_i = r + i*dr
|
||
|
top.append((r_i*(1 + (i % 2)*(c-1)), -(i % 2)*s*r_i))
|
||
|
bottom.append((r_i*(1 + (i % 2)*(c-1)), (i % 2)*s*r_i))
|
||
|
paths = paths + [Path([(r, 0), (R, 0)], 's'), # straight line 1
|
||
|
Path([(r*c, r*s), (R*c, R*s)], 's', invert=True), # straight line 2
|
||
|
Path(top, 's'), # top half of semicrease pattern
|
||
|
Path(bottom, 's')] # bottom half of semicrease pattern
|
||
|
|
||
|
all_paths = [paths]
|
||
|
for i in range(1, sides):
|
||
|
all_paths.append(Path.list_rotate(all_paths[0], i*2*dtheta))
|
||
|
|
||
|
self.path_tree = all_paths
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
|
||
|
if __name__ == '__main__':
|
||
|
e = PleatCircular() # remember to put the name of your Class here!
|
||
|
e.draw()
|