305 lines
11 KiB
Python
305 lines
11 KiB
Python
|
import numpy
|
||
|
import sys
|
||
|
import collections
|
||
|
numpy.set_printoptions(precision=3)
|
||
|
|
||
|
# *************************************************************
|
||
|
# debugging
|
||
|
def void(*l):
|
||
|
pass
|
||
|
def debug_on(*l):
|
||
|
sys.stderr.write(' '.join(str(i) for i in l) +'\n')
|
||
|
debug = void
|
||
|
#debug = debug_on
|
||
|
|
||
|
curveFragments = 10
|
||
|
|
||
|
|
||
|
def qudSmRelBezCurFrag(ctrlPts, startPoint):
|
||
|
#just call the normal one with adjusted coordinates
|
||
|
ctrlPts[0] = startPoint[-2] + ctrlPts[0]
|
||
|
ctrlPts[1] = startPoint[-1] + ctrlPts[1]
|
||
|
return qudSmBezCurFrag(ctrlPts, startPoint)
|
||
|
|
||
|
def qudSmBezCurFrag(ctrlPts, startPoint):
|
||
|
#There are no control points
|
||
|
debug("startPoint: '", startPoint, "'")
|
||
|
debug("shouldbethehandle: '", [startPoint[2] + (startPoint[2] - startPoint[0]), startPoint[3] + (startPoint[3] - startPoint[1])], "'")
|
||
|
#ctrlPtsExt = [startPoint[2] + (startPoint[2] - startPoint[0]), startPoint[3] + (startPoint[3] - startPoint[1])] + ctrlPts
|
||
|
ctrlPtsExt = [startPoint[-2] + (startPoint[-2] - startPoint[-4]), startPoint[-1] + (startPoint[-1] - startPoint[-3])] + ctrlPts
|
||
|
debug("startPoint: '", startPoint, "'")
|
||
|
debug("ctrlPts: '", ctrlPts, "'")
|
||
|
debug("startPoint[-2:]: '", startPoint[-2:], "'")
|
||
|
debug("ctrlPtsExt: '", ctrlPtsExt, "'")
|
||
|
debug("shound be the same as non smooth: '", ctrlPtsExt)
|
||
|
return cubBezCurFrag(ctrlPtsExt, startPoint[-2:])
|
||
|
|
||
|
def qudRelBezCurFrag(ctrlPts, startPoint):
|
||
|
#just call the normal one with adjusted coordinates
|
||
|
ctrlPts[0] = startPoint[-2] + ctrlPts[0]
|
||
|
ctrlPts[1] = startPoint[-1] + ctrlPts[1]
|
||
|
return qudBezCurFrag(ctrlPts, startPoint)
|
||
|
|
||
|
def qudBezCurFrag(ctrlPts, startPoint):
|
||
|
#tested working
|
||
|
debug("startPoint: '", startPoint, "'")
|
||
|
return cubBezCurFrag(ctrlPts, startPoint[-2:])
|
||
|
|
||
|
def cubSmRelBezCurFrag(ctrlPts, startPoint):
|
||
|
#just call the normal one with adjusted coordinates
|
||
|
#[prevL[-1][0] + x[0:1][0] , prevL[1] + x[1:2][1]]
|
||
|
ctrlPts[0] = startPoint[-2] + ctrlPts[0]
|
||
|
ctrlPts[1] = startPoint[-1] + ctrlPts[1]
|
||
|
return cubSmBezCurFrag(ctrlPts, startPoint)
|
||
|
|
||
|
def cubSmBezCurFrag(ctrlPts, startPoint):
|
||
|
#tested working
|
||
|
#just call the normal one with adjusted coordinates
|
||
|
ctrlPtsExt = [startPoint[-2] + (startPoint[-2] - startPoint[-4]), startPoint[-1] + (startPoint[-1] - startPoint[-3])] + ctrlPts
|
||
|
return cubBezCurFrag(ctrlPtsExt, startPoint[-2:])
|
||
|
|
||
|
def cubRelBezCurFrag(ctrlPts, startPoint):
|
||
|
#just call the normal one with adjusted coordinates
|
||
|
ctrlPts[0] = startPoint[-2] + ctrlPts[0]
|
||
|
ctrlPts[1] = startPoint[-1] + ctrlPts[1]
|
||
|
return cubBezCurFrag(ctrlPts, startPoint)
|
||
|
|
||
|
def compute(t, points): #, _3d
|
||
|
#// shortcuts
|
||
|
if (t == 0) :
|
||
|
#points[0].t = 0;
|
||
|
return points[0:2]
|
||
|
|
||
|
order = int((int(len(points)) / 2)) - 1;
|
||
|
|
||
|
if (t == 1) :
|
||
|
#points[order].t = 1;
|
||
|
return points[order * 2:order * 2 + 2]
|
||
|
|
||
|
mt = 1 - t
|
||
|
p = points
|
||
|
|
||
|
# // constant?
|
||
|
if (order == 0):
|
||
|
#points[0].t = t;
|
||
|
return points[0:2]
|
||
|
|
||
|
#// linear?
|
||
|
if (order == 1):
|
||
|
ret = [
|
||
|
mt * p[0] + t * p[2],
|
||
|
mt * p[1] + t * p[3]
|
||
|
# t: t,
|
||
|
]
|
||
|
# if (_3d) {
|
||
|
# ret.z = mt * p[0].z + t * p[1].z;
|
||
|
# }
|
||
|
return ret
|
||
|
|
||
|
#// quadratic/cubic curve?
|
||
|
mt2 = 0
|
||
|
a = b = c = d = 0
|
||
|
if (order < 4):
|
||
|
mt2 = mt * mt
|
||
|
t2 = t * t
|
||
|
else:
|
||
|
sys.stderr.write("Order :'" + str(order) +"' beyond limits of function")
|
||
|
return [0.0, 0.0]
|
||
|
|
||
|
if (order == 2):
|
||
|
p = p + [0,0]
|
||
|
a = mt2
|
||
|
b = mt * t * 2
|
||
|
c = t2
|
||
|
elif (order == 3):
|
||
|
a = mt2 * mt
|
||
|
b = mt2 * t * 3
|
||
|
c = mt * t2 * 3
|
||
|
d = t * t2
|
||
|
|
||
|
ret = [
|
||
|
a * p[0] + b * p[2] + c * p[4] + d * p[6],
|
||
|
a * p[1] + b * p[3] + c * p[5] + d * p[7]
|
||
|
]
|
||
|
# if (_3d) {
|
||
|
# ret.z = a * p[0].z + b * p[1].z + c * p[2].z + d * p[3].z;
|
||
|
# }
|
||
|
return ret
|
||
|
|
||
|
#TODO: Number of fragments should possibly be based upon the length of the segment.
|
||
|
|
||
|
def cubBezCurFrag(ctrlPts, startPoint):
|
||
|
#tested working
|
||
|
points =[]
|
||
|
rng = range(0, curveFragments + 1)
|
||
|
#sx = startPoint[0]
|
||
|
#sy = startPoint[1]
|
||
|
debug("control ", startPoint + ctrlPts)
|
||
|
inputPoints = startPoint + ctrlPts
|
||
|
for i in rng:
|
||
|
t = (float(i) / float(len(rng) - 1))
|
||
|
debug("t ", t, ":", i)
|
||
|
newp = compute(t, inputPoints)
|
||
|
#newp= [(1-t) ** 3 * startPoint[0] + 3 * ((1-t) ** 2) * t* ctrlPts[0] +3 * (1-t) * (t ** 2) * ctrlPts[2] + (t ** 3) * ctrlPts[4],
|
||
|
#(1-t) ** 3 * startPoint[1] + 3 * ((1-t) ** 2) * t* ctrlPts[1] +3 * (1-t) * (t ** 2) * ctrlPts[3] + (t ** 3) * ctrlPts[5]]
|
||
|
points.append(newp)
|
||
|
debug("result ", points)
|
||
|
return points
|
||
|
|
||
|
# *************************************************************
|
||
|
# a list of geometric helper functions
|
||
|
def toArray(parsedList):
|
||
|
"""Interprets a list of [(command, args),...]
|
||
|
where command is a letter coding for a svg path command
|
||
|
args are the argument of the command
|
||
|
"""
|
||
|
|
||
|
# The set of commands is now complete, all absolute positioning has been tested, relative positioning still neds some more testing.
|
||
|
# Curved parts of the path need fragmenting instead of just being taken as a straight line.
|
||
|
interpretCommand = {
|
||
|
'C': lambda x, prevL : cubBezCurFrag(x, prevL[-2:]), # cubic bezier curve. Ignore the curve. #TODO, fragment
|
||
|
'c': lambda x, prevL : cubRelBezCurFrag(x, prevL[-2:]), # cubic bezier curve, relative. Ignore the curve. #TODO, fragment
|
||
|
'S': lambda x, prevL : cubSmBezCurFrag(x, prevL), # cubic bezier curve, smooth. TODO, fragment
|
||
|
's': lambda x, prevL : cubSmRelBezCurFrag(x, prevL), # cubic bezier curve, smooth, relative. TODO, fragment
|
||
|
'Q': lambda x, prevL : qudBezCurFrag(x, prevL), # quadratic bezier curve. TODO, fragment
|
||
|
'q': lambda x, prevL : qudRelBezCurFrag(x, prevL), # quadratic bezier curve, relative TODO, fragment
|
||
|
#[[prevL[-1][0] + x[0:1][0] , prevL[1] + x[1:2][1]]], # quadratic bezier curve, relative TODO, fragment
|
||
|
'T': lambda x, prevL : qudSmBezCurFrag(x, prevL), # quadratic bezier curve, smooth. TODO, fragment
|
||
|
't': lambda x, prevL : qudSmRelBezCurFrag(x, prevL), # quadratic bezier curve, smooth, relative. TODO, fragment
|
||
|
'L': lambda x, prevL : [x[0:2]], # Line
|
||
|
'l': lambda x, prevL : [[prevL[0] + x[0:1][0] , prevL[1] + x[1:2][1]]], # Line, relative
|
||
|
'M': lambda x, prevL : [x[0:2]], # Move
|
||
|
'm': lambda x, prevL : [[prevL[0] + x[0:1][0] , prevL[1] + x[1:2][1]]], # Move, Relative
|
||
|
'H': lambda x, prevL : [[x[0:1][0],prevL[1]]], # Horizontal
|
||
|
'h': lambda x, prevL : [[prevL[0] + x[0:1][0], prevL[1]]], # Horizontal , relative
|
||
|
'V': lambda x, prevL : [[prevL[0], x[0:1][0]]], # Verticle
|
||
|
'v': lambda x, prevL : [[prevL[0], prevL[1] + x[0:1][0]]], # Verticle, relative
|
||
|
'A': lambda x, prevL : [x[5:7]], # Arc segment
|
||
|
'a': lambda x, prevL : [[prevL[0] + x[5:6][0] , prevL[1] + x[6:7][1]]], # Arc segment, relative
|
||
|
'Z': lambda x, prevL : [prevL[0]], # Close path
|
||
|
'z': lambda x, prevL : [prevL[0]], # Close path
|
||
|
}
|
||
|
|
||
|
#append the last set of attributes of the first element to the lookBack for cases where smooth or smooth quad segments appear at the begining of a path.
|
||
|
lookBack = parsedList[0][1] + parsedList[0][1]
|
||
|
points =[]
|
||
|
for i, (c, arg) in enumerate(parsedList):
|
||
|
debug('toArray ', i, c , arg)
|
||
|
debug('lookBack: ', lookBack)
|
||
|
newp = interpretCommand[c](arg, lookBack)
|
||
|
|
||
|
#double up if there are only two point entries to support transition into smooth beziers or arrays of smooth beziers etc..
|
||
|
if len(arg) == 2:
|
||
|
arg = arg + arg
|
||
|
|
||
|
#we only need to keep the last element in the lookBack, so remove any elemenmts in front.
|
||
|
lookBack = arg
|
||
|
|
||
|
debug('newPoints ', newp)
|
||
|
points = points + newp
|
||
|
a = numpy.array(points)
|
||
|
|
||
|
|
||
|
# Some times we have points *very* close to each other
|
||
|
# these do not bring any meaning full info, so we remove them
|
||
|
#
|
||
|
|
||
|
x, y, w, h = computeBox(a)
|
||
|
sizeC = 0.5*(w+h)
|
||
|
#deltas = numpy.zeros((len(a),2) )
|
||
|
deltas = a[1:] - a[:-1]
|
||
|
#deltas[-1] = a[0] - a[-1]
|
||
|
deltaD = numpy.sqrt(numpy.sum( deltas**2, 1 ))
|
||
|
sortedDind = numpy.argsort(deltaD)
|
||
|
# # expand longuest segments
|
||
|
nexp = int(len(deltaD)*0.9)
|
||
|
newpoints=[ None ]*len(a)
|
||
|
medDelta = deltaD[sortedDind[int(len(deltaD)/2)] ]
|
||
|
for i, ind in enumerate(sortedDind):
|
||
|
if deltaD[ind]/sizeC<0.005: continue
|
||
|
if i>nexp:
|
||
|
np = int(deltaD[ind]/medDelta)
|
||
|
pL = [a[ind]]
|
||
|
#print i,'=',ind,'adding ', np,' _ ', deltaD[ind], a[ind], a[ind+1]
|
||
|
for j in range(np-1):
|
||
|
f = float(j+1)/np
|
||
|
#print '------> ', (1-f)*a[ind]+f*a[ind+1]
|
||
|
pL.append( (1-f)*a[ind]+f*a[ind+1] )
|
||
|
newpoints[ind] = pL
|
||
|
else:
|
||
|
newpoints[ind]=[a[ind]]
|
||
|
if(D(a[0], a[-1])/sizeC > 0.005 ) :
|
||
|
newpoints[-1]=[a[-1]]
|
||
|
|
||
|
points = numpy.concatenate([p for p in newpoints if p!=None] )
|
||
|
# ## print ' medDelta ', medDelta, deltaD[sortedDind[-1]]
|
||
|
# ## print len(a) ,' ------> ', len(points)
|
||
|
|
||
|
rel_norms = numpy.sqrt(numpy.sum( deltas**2, 1 )) / sizeC
|
||
|
keep = numpy.concatenate([numpy.where( rel_norms >0.005 )[0], numpy.array([len(a)-1])])
|
||
|
|
||
|
#return a[keep] , [ parsedList[i] for i in keep]
|
||
|
#print len(a),' ',len(points)
|
||
|
return points, []
|
||
|
|
||
|
rotMat = numpy.array( [[1, -1], [1, 1]] )/numpy.sqrt(2)
|
||
|
unrotMat = numpy.array( [[1, 1], [-1, 1]] )/numpy.sqrt(2)
|
||
|
|
||
|
def setupKnownAngles():
|
||
|
pi = numpy.pi
|
||
|
#l = [ i*pi/8 for i in range(0, 9)] +[ i*pi/6 for i in [1,2,4,5,] ]
|
||
|
l = [ i*pi/8 for i in range(0, 9)] +[ i*pi/6 for i in [1, 2, 4, 5,] ] + [i*pi/12 for i in (1, 5, 7, 11)]
|
||
|
knownAngle = numpy.array( l )
|
||
|
return numpy.concatenate( [-knownAngle[:0:-1], knownAngle ])
|
||
|
knownAngle = setupKnownAngles()
|
||
|
|
||
|
_twopi = 2*numpy.pi
|
||
|
_pi = numpy.pi
|
||
|
|
||
|
def deltaAngle(a1, a2):
|
||
|
d = a1 - a2
|
||
|
return d if d > -_pi else d+_twopi
|
||
|
|
||
|
def closeAngleAbs(a1, a2):
|
||
|
d = abs(a1 - a2 )
|
||
|
return min( abs(d-_pi), abs( _twopi - d), d)
|
||
|
|
||
|
def deltaAngleAbs(a1, a2):
|
||
|
return abs(in_mPi_pPi(a1 - a2 ))
|
||
|
|
||
|
def in_mPi_pPi(a):
|
||
|
if(a>_pi): return a-_twopi
|
||
|
if(a<-_pi): return a+_twopi
|
||
|
return a
|
||
|
vec_in_mPi_pPi = numpy.vectorize(in_mPi_pPi)
|
||
|
|
||
|
def D2(p1, p2):
|
||
|
return ((p1-p2)**2).sum()
|
||
|
|
||
|
def D(p1, p2):
|
||
|
return numpy.sqrt(D2(p1, p2) )
|
||
|
|
||
|
def norm(p):
|
||
|
return numpy.sqrt( (p**2).sum() )
|
||
|
|
||
|
def computeBox(a):
|
||
|
"""returns the bounding box enclosing the array of points a
|
||
|
in the form (x,y, width, height) """
|
||
|
|
||
|
xmin, ymin = a[:, 0].min(), a[:, 1].min()
|
||
|
xmax, ymax = a[:, 0].max(), a[:, 1].max()
|
||
|
return xmin, ymin, xmax-xmin, ymax-ymin
|
||
|
|
||
|
def dirAndLength(p1, p2):
|
||
|
#l = max(D(p1, p2) ,1e-4)
|
||
|
l = D(p1, p2)
|
||
|
uv = (p1-p2)/l
|
||
|
return l, uv
|
||
|
|
||
|
def length(p1, p2):
|
||
|
return numpy.sqrt( D2(p1, p2) )
|
||
|
|
||
|
def barycenter(points):
|
||
|
"""
|
||
|
"""
|
||
|
return points.sum(axis=0)/len(points)
|