218 lines
8.6 KiB
Python
218 lines
8.6 KiB
Python
|
#!/usr/bin/env python3
|
|||
|
|
|||
|
import math
|
|||
|
import inkex
|
|||
|
from inkex.transforms import Transform
|
|||
|
|
|||
|
class IsometricProjection(inkex.EffectExtension):
|
|||
|
"""
|
|||
|
Convert a flat 2D projection to one of the three visible sides in an
|
|||
|
isometric projection, and vice versa.
|
|||
|
"""
|
|||
|
|
|||
|
attrTransformCenterX = inkex.addNS('transform-center-x', 'inkscape')
|
|||
|
attrTransformCenterY = inkex.addNS('transform-center-y', 'inkscape')
|
|||
|
|
|||
|
# Precomputed values for sine, cosine, and tangent of 30°.
|
|||
|
rad_30 = math.radians(30)
|
|||
|
cos_30 = math.cos(rad_30)
|
|||
|
sin_30 = 0.5 # No point in using math.sin for 30°.
|
|||
|
tan_30 = math.tan(rad_30)
|
|||
|
|
|||
|
# Combined affine transformation matrices. The bottom row of these 3×3
|
|||
|
# matrices is omitted; it is always [0, 0, 1].
|
|||
|
transformations = {
|
|||
|
# From 2D to isometric top down view:
|
|||
|
# * scale vertically by cos(30°)
|
|||
|
# * shear horizontally by -30°
|
|||
|
# * rotate clock-wise 30°
|
|||
|
'to_top': [[cos_30, -cos_30, 0],
|
|||
|
[sin_30, sin_30, 0]],
|
|||
|
|
|||
|
# From 2D to isometric left-hand side view:
|
|||
|
# * scale horizontally by cos(30°)
|
|||
|
# * shear vertically by -30°
|
|||
|
'to_left': [[cos_30, 0, 0],
|
|||
|
[sin_30, 1, 0]],
|
|||
|
|
|||
|
# From 2D to isometric right-hand side view:
|
|||
|
# * scale horizontally by cos(30°)
|
|||
|
# * shear vertically by 30°
|
|||
|
'to_right': [[cos_30, 0, 0],
|
|||
|
[-sin_30, 1, 0]],
|
|||
|
|
|||
|
# From isometric top down view to 2D:
|
|||
|
# * rotate counter-clock-wise 30°
|
|||
|
# * shear horizontally by 30°
|
|||
|
# * scale vertically by 1 / cos(30°)
|
|||
|
'from_top': [[tan_30, 1, 0],
|
|||
|
[-tan_30, 1, 0]],
|
|||
|
|
|||
|
# From isometric left-hand side view to 2D:
|
|||
|
# * shear vertically by 30°
|
|||
|
# * scale horizontally by 1 / cos(30°)
|
|||
|
'from_left': [[1 / cos_30, 0, 0],
|
|||
|
[-tan_30, 1, 0]],
|
|||
|
|
|||
|
# From isometric right-hand side view to 2D:
|
|||
|
# * shear vertically by -30°
|
|||
|
# * scale horizontally by 1 / cos(30°)
|
|||
|
'from_right': [[1 / cos_30, 0, 0],
|
|||
|
[tan_30, 1, 0]]
|
|||
|
}
|
|||
|
|
|||
|
def add_arguments(self, pars):
|
|||
|
pars.add_argument('--conversion', default='top', help='Conversion to perform: (top|left|right)')
|
|||
|
pars.add_argument('--reverse', type=inkex.Boolean, default=False, help='Reverse the transformation from isometric projection to flat 2D')
|
|||
|
self.arg_parser.add_argument('--orthoangle', type=float, default=15.0, help='Isometric angle in degrees')
|
|||
|
|
|||
|
def __initConstants(self, angle):
|
|||
|
# Precomputed values for sine, cosine, and tangent of orthoangle.
|
|||
|
self.rad = math.radians(angle)
|
|||
|
self.cos = math.cos(self.rad)
|
|||
|
self.sin = math.sin(self.rad)
|
|||
|
self.tan = math.tan(self.rad)
|
|||
|
|
|||
|
# Combined affine transformation matrices. The bottom row of these 3×3
|
|||
|
# matrices is omitted; it is always [0, 0, 1].
|
|||
|
self.transformations = {
|
|||
|
# From 2D to isometric top down view:
|
|||
|
# * scale vertically by cos(∠)
|
|||
|
# * shear horizontally by -∠
|
|||
|
# * rotate clock-wise ∠
|
|||
|
'to_top': Transform(((self.cos, -self.cos, 0),
|
|||
|
(self.sin, self.sin, 0))),
|
|||
|
|
|||
|
# From 2D to isometric left-hand side view:
|
|||
|
# * scale horizontally by cos(∠)
|
|||
|
# * shear vertically by -∠
|
|||
|
'to_left': Transform(((self.cos, 0, 0),
|
|||
|
(self.sin, 1, 0))),
|
|||
|
|
|||
|
# From 2D to isometric right-hand side view:
|
|||
|
# * scale horizontally by cos(∠)
|
|||
|
# * shear vertically by ∠
|
|||
|
'to_right': Transform(((self.cos , 0, 0),
|
|||
|
(-self.sin, 1, 0))),
|
|||
|
|
|||
|
# From isometric top down view to 2D:
|
|||
|
# * rotate counter-clock-wise orthoangle
|
|||
|
# * shear horizontally by orthoangle
|
|||
|
# * scale vertically by 1 / cos(orthoangle)
|
|||
|
'from_top': [[self.tan , 1, 0],
|
|||
|
[-self.tan, 1, 0]],
|
|||
|
|
|||
|
# From isometric left-hand side view to 2D:
|
|||
|
# * shear vertically by orthoangle
|
|||
|
# * scale horizontally by 1 / cos(orthoangle)
|
|||
|
'from_left': [[1 / self.cos, 0, 0],
|
|||
|
[-self.tan, 1, 0]],
|
|||
|
|
|||
|
# From isometric right-hand side view to 2D:
|
|||
|
# * shear vertically by -orthoangle
|
|||
|
# * scale horizontally by 1 / cos(orthoangle)
|
|||
|
'from_right': [[1 / self.cos, 0, 0],
|
|||
|
[self.tan, 1, 0]]
|
|||
|
}
|
|||
|
|
|||
|
# The inverse matrices of the above perform the reverse transformations.
|
|||
|
self.transformations['from_top'] = -self.transformations['to_top']
|
|||
|
self.transformations['from_left'] = -self.transformations['to_left']
|
|||
|
self.transformations['from_right'] = -self.transformations['to_right']
|
|||
|
|
|||
|
def getTransformCenter(self, midpoint, node):
|
|||
|
"""
|
|||
|
Find the transformation center of an object. If the user set it
|
|||
|
manually by dragging it in Inkscape, those coordinates are used.
|
|||
|
Otherwise, an attempt is made to find the center of the object's
|
|||
|
bounding box.
|
|||
|
"""
|
|||
|
|
|||
|
c_x = node.get(self.attrTransformCenterX)
|
|||
|
c_y = node.get(self.attrTransformCenterY)
|
|||
|
|
|||
|
# Default to dead-center.
|
|||
|
if c_x is None:
|
|||
|
c_x = 0.0
|
|||
|
else:
|
|||
|
c_x = float(c_x)
|
|||
|
if c_y is None:
|
|||
|
c_y = 0.0
|
|||
|
else:
|
|||
|
c_y = float(c_y)
|
|||
|
|
|||
|
x = midpoint[0] + c_x
|
|||
|
y = midpoint[1] - c_y
|
|||
|
|
|||
|
return [x, y]
|
|||
|
|
|||
|
def translateBetweenPoints(self, tr, here, there):
|
|||
|
"""
|
|||
|
Add a translation to a matrix that moves between two points.
|
|||
|
"""
|
|||
|
|
|||
|
x = there[0] - here[0]
|
|||
|
y = there[1] - here[1]
|
|||
|
tr.add_translate(x, y)
|
|||
|
|
|||
|
def moveTransformationCenter(self, node, midpoint, center_new):
|
|||
|
"""
|
|||
|
If a transformation center is manually set on the node, move it to
|
|||
|
match the transformation performed on the node.
|
|||
|
"""
|
|||
|
|
|||
|
c_x = node.get(self.attrTransformCenterX)
|
|||
|
c_y = node.get(self.attrTransformCenterY)
|
|||
|
|
|||
|
if c_x is not None:
|
|||
|
x = str(center_new[0] - midpoint[0])
|
|||
|
node.set(self.attrTransformCenterX, x)
|
|||
|
if c_y is not None:
|
|||
|
y = str(midpoint[1] - center_new[1])
|
|||
|
node.set(self.attrTransformCenterY, y)
|
|||
|
|
|||
|
def effect(self):
|
|||
|
|
|||
|
self.__initConstants(self.options.orthoangle)
|
|||
|
|
|||
|
if self.options.reverse is True:
|
|||
|
conversion = "from_" + self.options.conversion
|
|||
|
else:
|
|||
|
conversion = "to_" + self.options.conversion
|
|||
|
|
|||
|
if len(self.svg.selected) == 0:
|
|||
|
inkex.errormsg("Please select an object to perform the " +
|
|||
|
"isometric projection transformation on.")
|
|||
|
return
|
|||
|
|
|||
|
# Default to the flat 2D to isometric top down view conversion if an
|
|||
|
# invalid identifier is passed.
|
|||
|
effect_matrix = self.transformations.get(
|
|||
|
conversion, self.transformations.get('to_top'))
|
|||
|
|
|||
|
for id, node in self.svg.selected.items():
|
|||
|
bbox = node.bounding_box()
|
|||
|
midpoint = [bbox.center_x, bbox.center_y]
|
|||
|
center_old = self.getTransformCenter(midpoint, node)
|
|||
|
transform = Transform(node.get("transform"))
|
|||
|
# Combine our transformation matrix with any pre-existing transform.
|
|||
|
tr = transform @ effect_matrix
|
|||
|
|
|||
|
# Compute the location of the transformation center after applying
|
|||
|
# the transformation matrix.
|
|||
|
center_new = center_old[:]
|
|||
|
#Transform(matrix).apply_to_point(center_new)
|
|||
|
tr.apply_to_point(center_new)
|
|||
|
tr.apply_to_point(midpoint)
|
|||
|
|
|||
|
# Add a translation transformation that will move the object to
|
|||
|
# keep its transformation center in the same place.
|
|||
|
self.translateBetweenPoints(tr, center_new, center_old)
|
|||
|
|
|||
|
node.set('transform', str(tr))
|
|||
|
|
|||
|
# Adjust the transformation center.
|
|||
|
self.moveTransformationCenter(node, midpoint, center_new)
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
IsometricProjection().run()
|